

Rare event statistics and beyond

Sergei Nechaev

Interdisciplinary Scientific Center Poncelet, CNRS, Moscow

$$a_{ij} = \begin{cases} 1 & \text{prob } r \\ 0 & \text{prob } 1 - r \end{cases}$$

 $N \times N = 50 \times 50$

Spectral density $\rho(\lambda)$ of sparse random graphs at percolation point

Spectral density $\rho(\lambda)$ of sparse random graphs at percolation point

Spectral statistics of protein-protein interaction network in *Drosophyla melanogaster*

C. Kamp, K. Christensen, Phys. Rev. E (2005)

Spectral statistics of protein-protein interaction network in *Drosophyla melanogaster*

C. Kamp, K. Christensen, Phys. Rev. E (2005)

Sample of spectral statistics of adjacency matrix of X chromosome in single-cell experiments (resolution 10 kb)

Sample of spectral statistics of adjacency matrix of X chromosome in single-cell experiments (resolution 10 kb)

Semi-logarithmic plot

We have computed the distribution of **all** clusters in sizes, and separately – of clusters of **linear chains** only

We have computed the distribution of **all** clusters in sizes, and separately – of clusters of **linear chains** only

We have computed the distribution of **all** clusters in sizes, and separately – of clusters of **linear chains** only

 $\left(\frac{2-e^{-1}}{e-1}\right) \times 100\% \approx 95\%$ of all random subgraphs at percolation are linear "polymers" with distribution $P(n) \sim e^{-n}$

Consider an ensemble of two(three)-diagonal matrices

$$\begin{pmatrix} 0 & x_1 & 0 & 0 & \cdots \\ x_1 & 0 & x_2 & 0 & \\ 0 & x_2 & 0 & x_3 & \\ 0 & 0 & x_3 & 0 & \\ \vdots & & & \ddots \end{pmatrix}$$

where the matrix elements are

$$x_i = \begin{cases} 1 & \text{with probability } q \\ 0 & \text{with probability } 1 - q \end{cases}$$

Adjacency matrix spits in uniform Jordan cells with the distribution ~ q^n (0<q<1) in sizes

Adjacency matrix spits in uniform Jordan cells with the distribution ~ q^n (0<q<1) in sizes

The set of eigenvalues in the cell of size $n \ge n$ is $\lambda_k = 2 \cos \frac{\pi k}{n+1}; \quad (k = 1, ..., n)$ Spectral density, $\rho_{\text{lin}}(\lambda)$, of the ensemble of random matrices is:

$$\rho_{\text{lin}}(\lambda) = \lim_{N \to \infty} \frac{1}{N} \left\langle \sum_{k=1}^{N} \delta(\lambda - \lambda_k) \right\rangle$$

Spectral density, $\rho_{lin}(\lambda)$, of the ensemble of random matrices is:

$$\rho_{\text{lin}}(\lambda) = \lim_{N \to \infty} \frac{1}{N} \left\langle \sum_{k=1}^{N} \delta(\lambda - \lambda_k) \right\rangle$$

Summing the spectra of exponentially weighted Jordan cells, we get:

$$\rho_{\min}(\lambda) = \lim_{N \to \infty \atop \varepsilon \to 0} \frac{\varepsilon}{\pi N} \sum_{n=1}^{N} q^n \sum_{k=1}^{n} \frac{1}{\left(\lambda - 2\cos\frac{\pi k}{n+1}\right)^2 + \varepsilon^2}$$

Spectral density of an ensemble of random three-diagonal operators

Spectral density of an ensemble of random three-diagonal operators

Spectral density of an ensemble of random three-diagonal operators

Could we get analytic expression for a limiting form (at $q \rightarrow 1$) of the full spectral density, $\rho_{\text{lin}}(\lambda)$?

$$\eta(z) = e^{\pi i z/12} \prod_{n=0}^{\infty} (1 - e^{2\pi i n z}); \quad z = x + iy \quad (y > 0)$$

$$\eta(z) = e^{\pi i z/12} \prod_{n=0}^{\infty} (1 - e^{2\pi i n z}); \quad z = x + iy \quad (y > 0)$$

$$\eta(z) = e^{\pi i z/12} \prod_{n=0}^{\infty} (1 - e^{2\pi i n z}); \quad z = x + iy \quad (y > 0)$$

$$\eta(z) = e^{\pi i z/12} \prod_{n=0}^{\infty} (1 - e^{2\pi i n z}); \quad z = x + iy \quad (y > 0)$$

Spectral density $\rho_{\text{lin}}(\lambda)$ of ensemble of exponentially weighted random 3-diagonal matrices at $q \rightarrow 1$

$$\rho_{\min}(\lambda) = \lim_{\substack{N \to \infty \\ \varepsilon \to 0}} \frac{\varepsilon}{\pi N} \sum_{n=1}^{N} q^n \sum_{k=1}^{n} \frac{1}{\left(\lambda - 2\cos\frac{\pi k}{n+1}\right)^2 + \varepsilon^2}$$

Spectral density $\rho_{\text{lin}}(\lambda)$ of ensemble of exponentially weighted random 3-diagonal matrices at $q \rightarrow 1$

$$\rho_{\text{lin}}(\lambda) = \lim_{N \to \infty \atop \varepsilon \to 0} \frac{\varepsilon}{\pi N} \sum_{n=1}^{N} q^n \sum_{k=1}^{n} \frac{1}{\left(\lambda - 2\cos\frac{\pi k}{n+1}\right)^2 + \varepsilon^2}$$
$$\lim_{q \to 1^-} \frac{\rho_{\text{lin}}(\lambda, q)}{\sqrt{-\ln\left|\eta\left(\frac{1}{\pi}\arccos(-\lambda/2) + i\frac{(1-q)^2}{12\pi}\right)\right|}} = 1$$

Spectral density $\rho_{\text{lin}}(\lambda)$ of ensemble of exponentially weighted random 3-diagonal matrices at $q \rightarrow 1$

$$\rho_{\text{lin}}(\lambda) = \lim_{\substack{N \to \infty \\ \varepsilon \to 0}} \frac{\varepsilon}{\pi N} \sum_{n=1}^{N} q^n \sum_{k=1}^{n} \frac{1}{\left(\lambda - 2\cos\frac{\pi k}{n+1}\right)^2 + \varepsilon^2}$$
$$\lim_{q \to 1^-} \frac{\rho_{\text{lin}}(\lambda, q)}{\sqrt{-\ln\left|\eta\left(\frac{1}{\pi}\arccos(-\lambda/2) + i\frac{(1-q)^2}{12\pi}\right)\right|}} = 1$$
$$\rho_{\text{lin}}(\lambda) \text{ computed via} \text{ Monte-Carlo}$$
$$\bigcap_{q \to 0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{\infty} \int_{$$

Thomae function, Dedekind η and Euclid orchard

Thomae function, Dedekind η and Euclid orchard

Thomae function, Dedekind η and Euclid orchard

Lifshitz tail of 1D Anderson localization $\rho_{\rm lin}^{S_1}(\lambda \to 2) \to q^{\pi/\sqrt{2-\lambda}}.$

Laplace transform gives:

$$\rho(N) = \frac{1}{2\pi i} \oint \rho(\lambda) e^{N\lambda} d\lambda |_{N \gg 1} \sim \varphi(N) e^{-aN - bN^{1/3}}$$

Modular Dedekind η – function is invariant with respect to SL(2,Z) group

$$\eta(z) = e^{\pi i z/12} \prod_{n=0}^{\infty} (1 - e^{2\pi i n z}); \quad z = x + iy \quad (y > 0)$$
$$\eta(z+1) = e^{\pi i z/12} \eta(z)$$
$$\eta\left(-\frac{1}{z}\right) = \sqrt{-i} \eta(z)$$

Modular Dedekind η – function is invariant with respect to SL(2,Z) group

$$\begin{aligned} \eta(z) &= e^{\pi i z/12} \prod_{n=0}^{\infty} (1 - e^{2\pi i n z}); \quad z = x + iy \quad (y > 0) \\ \eta(z+1) &= e^{\pi i z/12} \eta(z) \\ \eta\left(-\frac{1}{z}\right) &= \sqrt{-i} \eta(z) \end{aligned}$$

Define $f(z) = \operatorname{const} |\eta(x+iy)| y^{1/4}$

Modular Dedekind η – function is invariant with respect to SL(2,Z) group

$$\eta(z) = e^{\pi i z/12} \prod_{n=0}^{\infty} (1 - e^{2\pi i n z}); \quad z = x + iy \quad (y > 0)$$
$$\eta(z+1) = e^{\pi i z/12} \eta(z)$$
$$\eta\left(-\frac{1}{z}\right) = \sqrt{-i} \eta(z)$$

Define $f(z) = \operatorname{const} |\eta(x+iy)| y^{1/4}$

$$f(z)$$
 obeys duality relation
 $f\left(\frac{k}{k+1}+iy\right) = f\left(\frac{1}{k+1}+\frac{i}{(k+1)^2y}\right)$

Phyllotaxis

Phyllotaxis

Energetic approach to phyllotaxis, L. Levitov, (1991)

Phyllotaxis

Energetic approach to phyllotaxis, L. Levitov, (1991)

$$x = \frac{\alpha}{2\pi}, \ y = \frac{h}{2\pi} \qquad r_{n,m} = \left(\frac{m+nx}{\sqrt{y}}, n\sqrt{y}\right) \qquad E = \sum_{n,m} e^{-\frac{c(m+nx)^2}{y} - cyn^2}$$

Conjectures

- Hierarchical (ultrametric) organization occurs in collective variables when conformational space is huge, and statistics is rare.
- Such a situation is natural for protein folding, analysis of statistical properties of genome, "large data", etc ...
- Another option: ultrametricity occurs as a conflict between intrinsic geometry of object and geometry of space of embedding

How to describe the profile?

Jupe à godets

Exponential proliferation of cells in a thin slit

When we open the slit, the material relaxes into the 3D structure

When we open the slit, the material relaxes into the 3D structure

Buckling occurs as a conflict between intrinsic geometry of object and geometry of space of embedding

Growth induces strain in a tissue near its edge and results in:

- (i) in-plane tissue compression and/or redistribution of layer cells accompanied by the in-plane instability ("stretching")
- (ii) out-of-plane tissue buckling with the formation of saddle-like surface regions ("bending")

Growth induces strain in a tissue near its edge and results in:

- (i) in-plane tissue compression and/or redistribution of layer cells accompanied by the in-plane instability ("stretching")
- (ii) out-of-plane tissue buckling with the formation of saddle-like surface regions ("bending")

For bending rigidity of a thin membrane $B \sim h^3$, while for stretching rigidity, $S \sim h$, where *h* is the membrane thickness. Growth induces strain in a tissue near its edge and results in:

- (i) in-plane tissue compression and/or redistribution of layer cells accompanied by the in-plane instability ("stretching")
- (ii) out-of-plane tissue buckling with the formation of saddle-like surface regions ("bending")

- For bending rigidity of a thin membrane $B \sim h^3$, while for stretching rigidity, $S \sim h$, where *h* is the membrane thickness.
- Thin tissues, with $h \ll 1$, prefer to bend, i.e. to be negatively curved under relatively small critical strain

Formulation of the problem

Exponentially growing colony (hyperbolic structure) admits Cayley trees as possible discretizations.

The Cayley trees cover the hyperbolic surface *isometrically*, i.e. without gaps and selfintersections, preserving angles and distances.

Our goal is an embedding a Cayley tree into a 3D Euclidean space with a signature {+1,+1,+1}.

Hilbert theorem prohibits embedding of unbounded Hyperbolic surface into Euclidean space smoothly

The relief of the surface is encoded in the *coefficient* of *deformation*, coinciding with the Jacobian $J(\zeta)$ of the conformal transform $z(\zeta)$, where

$$J(\varsigma) = \left| dz \, / \, d\varsigma \right|^2$$

Isometric embedding of a Cayley tree into Poincare disc and a strip

Isometric embedding of a Cayley tree into Poincare disc and a strip

Optimal profile – is the surface in which we can *isometrically* embed exponentially growing graph

(S. N., K. Polovnikov, Soft Matter, 2017)

The metric ds^2 of a 2D surface parametrized by (u,v), is given by the coefficients

$$\boldsymbol{E} = \mathbf{r}_u^2, \quad \boldsymbol{G} = \mathbf{r}_v^2, \quad \boldsymbol{F} = (\mathbf{r}_u, \mathbf{r}_v)$$

of the first quadratic form of this surface $ds^{2} = Edu^{2} + 2F dudv + Gdv^{2}$

The surface area then reads

$$\mathrm{d}S = \sqrt{EG - F^2} \mathrm{d}u \mathrm{d}v$$

Surface embedded in 3D has the same metric as Poincare disc

 $\bigcup_{x \to 0} S_{ABC} = \int_{\Delta ABC} dx dy = \text{const}$

$$S_{ABC} = \int_{\Delta ABC} |J(z, w)| du dv; \quad J(z, w) = \begin{vmatrix} \partial_u x & \partial_u y \\ \partial_v x & \partial_v y \end{vmatrix}$$

If z(w) is holomorphic, the Cauchy-Riemann conditions provide

$$J(w) = \left|\frac{\mathrm{d}z(w)}{\mathrm{d}w}\right|^2 \equiv |z'(w)|^2$$

Surface embedded in 3D has the same metric as Poincare disc

$$S_{A'} = \int_{\triangle A'} |J(z, w)| du dv$$

If we impose the condition for a surface to be a *function* above (u,v), then we can write the surface element in curvilinear coordinates

$$J(w) = \sqrt{1 + \left(\frac{\partial f}{\partial u}\right)^2 + \left(\frac{\partial f}{\partial v}\right)^2} \\ \left(\frac{\partial f(u, v)}{\partial u}\right)^2 + \left(\frac{\partial f(u, v)}{\partial v}\right)^2 = \left|\frac{dz(w)}{dw}\right|^4 - 1$$

Relief of the surface f(u,v) is defined by the *eikonal* equation

$$\left(\frac{\partial f(u,v)}{\partial u}\right)^2 + \left(\frac{\partial f(u,v)}{\partial v}\right)^2 = \left|\frac{dz(w)}{dw}\right|^4 - 1$$

Relief of the surface f(u,v) is defined by the eikonal equation

$$\left(\frac{\partial f(u,v)}{\partial u}\right)^2 + \left(\frac{\partial f(u,v)}{\partial v}\right)^2 = \left|\frac{dz(w)}{dw}\right|^4 - 1$$

In our case we have to solve the equation for the function f(u,v) given by the conformal transform

$$\left(\frac{\partial f(u,v)}{\partial u}\right)^2 + \left(\frac{\partial f(u,v)}{\partial v}\right)^2 = \frac{a^{-2}|\eta(w)|^{16}}{\pi^{4/3}B^4(\frac{1}{3},\frac{1}{3})} - 1$$

Geometric optic analogy

Comparing equation

$$\left(\frac{\partial f(u,v)}{\partial u}\right)^2 + \left(\frac{\partial f(u,v)}{\partial v}\right)^2 = \frac{a^{-2} \left|\eta(w)\right|^{16}}{\pi^{4/3} B^4(\frac{1}{3},\frac{1}{3})} - 1$$

to the standard eikonal equation for the rays in optically inhomogeneous media

 $(\nabla S)^2 = n^2(x)$

We conclude that the rays propagate along optimal Fermat paths in Euclidean domain. They are projections of geodesics of corresponding "eikonal surface". The refraction coefficient in this case reads $n^2 = |z'(w)|^4 - 1$

The rigidity in our geometric approach is controlled by the parameter a – the size of elementary flat domain

The rigidity in our geometric approach is controlled by the parameter a – the size of elementary flat domain

1) If $a \ge 1$, the surface is rigid

The rigidity in our geometric approach is controlled by the parameter a – the size of elementary flat domain

1) If $a \ge 1$, the surface is rigid

The rigidity in our geometric approach is controlled by the parameter a – the size of elementary flat domain

1) If $a \ge 1$, the surface is rigid

2) If 0 < a <<1, the surface is flexible

The rigidity in our geometric approach is controlled by the parameter a – the size of elementary flat domain

1) If $a \ge 1$, the surface is rigid

2) If 0 < a <<1, the surface is flexible

a=0.07

Buckling in a strip

Buckling in a strip

Buckling in a strip

Formation of hierarchical folds due to ultrametricity of Dedekind η -function

stretched paths above semicircle

$$\langle d \rangle \sim R^{1/3}$$

stretched paths above triangle

 $\langle d \rangle = \text{const}$

stretched paths above semicircle

$$\langle d \rangle \sim R^{1/3}$$

stretched paths above triangle

 $\langle d \rangle = \text{const}$

For a curve of order γ

$$\frac{y}{R} = \left(\frac{x}{R}\right)^{\gamma}$$

 $\langle d \rangle \sim R^{(\gamma-1)/(2\gamma-1)}$

Torus knots

HOMFLY polynomial $\overline{P}(K)(q,a)$ satisfies skein relation

$$a\overline{P}\langle \swarrow \rangle - a^{-1}\overline{P}\langle \swarrow \rangle = (q - q^{-1})\overline{P}\langle \land \rangle$$

Consider *reduced* HOMFLY $P(K)(q,a) = \frac{\overline{P}(K)(q,a)}{\overline{P}(unknot)}$

E. Gorsky (2011), and A. Oblomkov, J. Rasmussen, V. Shende and E. Gorsky (2012) showed that HOMFLY P(K)(a,q) for T(n,n+1)torus knots can be written as Narayana generating function

$$P_n(K)(q,a) = \sum_{\substack{\text{Dyck paths} \\ \text{of length } n}} a^{\text{corners}} q^{\text{area}}$$

Proof involved consideration of Euler characteristic of triplygraded knot homology $H_{i,j,k}$ in terms of Young diagrams

$$P(K)(q, a, t) = \sum_{i, j, k} a^{i} q^{j} t^{k} \dim H_{i, j, k}$$
$$P(K)(q, a, t = -1) \equiv P(K)(q, a)$$

K. Bulycheva, A. Gorsky, S.N., Critical behavior in topological ensembles, 2015

Having connection between: small-viscosity Burgers equation area- and corner-weighted Brownian excursions HOMFLY polynomials for (n, n+1) torus knots we may investigate and interpret the critical behavior in knot ensembles

What is the physical meaning of singularities in knot generating functions?

Conjecture:

Below and above the critical point the knot discrimination is different