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Spectral density r(l) of sparse random graphs at 
percolation point



Spectral density r(l) of sparse random graphs at 
percolation point

Semi-logarithmic plot for l > 0



Spectral statistics of protein-protein interaction 
network in Drosophyla melanogaster

C. Kamp, K. Christensen, Phys. Rev. E (2005)
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Sample of spectral statistics of adjacency matrix 
of X chromosome in single-cell experiments 

(resolution 10 kb)
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(resolution 10 kb)

Semi-logarithmic plot



We have computed the distribution of all clusters in 
sizes, and separately – of clusters of linear chains only
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of all random subgraphs at percolation
are linear “polymers” with distribution
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Consider an ensemble of two(three)-diagonal 
matrices

where the matrix elements are
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Adjacency matrix spits in uniform Jordan cells with
the distribution ~ qn (0<q<1) in sizes

n
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Adjacency matrix spits in uniform Jordan cells with
the distribution ~ qn (0<q<1) in sizes

n

The set of eigenvalues in the cell of size n x n is

Matrix N x N (N >>1)
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Spectral density, rlin(l), of the ensemble of random
matrices is:



Spectral density, rlin(l), of the ensemble of random
matrices is:

Summing the spectra of exponentially weighted
Jordan cells, we get:



Spectral density of an ensemble of random 
three-diagonal operators
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Could we get analytic expression for a limiting 
form (at q → 1) of the full spectral density, rlin(l)?



Some plots on the basis of Dedekind h – function
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Spectral density rlin(l) of ensemble of exponentially 
weighted random 3-diagonal matrices at q  1



Spectral density rlin(l) of ensemble of exponentially 
weighted random 3-diagonal matrices at q  1



Spectral density rlin(l) of ensemble of exponentially 
weighted random 3-diagonal matrices at q  1

rlin(l) computed via 
Monte-Carlo

Numeric summation of 
the series for rlin(l)

Analytic expression of 
rlin(l) via Dedekind h
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Spectrum tail for q < 1



Spectrum tail for q < 1

Lifshitz tail of 1D Anderson localization

Laplace transform gives:

𝜌(𝑁) =
1

2𝜋𝑖
ර𝜌(𝜆)𝑒𝑁𝜆𝑑𝜆 |𝑁≫1 ∼ 𝜑(𝑁)𝑒−𝑎𝑁−𝑏𝑁

Τ1 3



Modular Dedekind h – function is invariant 
with respect to SL(2,Z) group



Define 1/4            ( ) const | ( ) |        f z x iy yh 

Modular Dedekind h – function is invariant 
with respect to SL(2,Z) group



Define

f(z) obeys duality relation

1/4            ( ) const | ( ) |        f z x iy yh 

Modular Dedekind h – function is invariant 
with respect to SL(2,Z) group



1/4            ( ) const | ( ) |        f z x iy yh 



Phyllotaxis



Phyllotaxis

Energetic approach to phyllotaxis, L. Levitov, (1991)



Phyllotaxis

Energetic approach to phyllotaxis, L. Levitov, (1991)



Rare events, Ultrametricity,
Extreme value statistics, 
Large deviations in RMT

Number theory, 
Spectral density of 

sparse matrices

Isometric embedding 
of hyperbolic graphs 

in 3D

Anomalous (KPZ) 
fluctuations in large 

deviation regime

Constrained Dyck
paths and HOMFLY 

of torus knots

1D
 A

nd
er

so
n 

lo
ca

liz
at

io
n



Rare events, Ultrametricity,
Extreme value statistics, 
Large deviations in RMT

Number theory, 
Spectral density of 

sparse matrices

Isometric embedding 
of hyperbolic graphs 

in 3D

Anomalous (KPZ) 
fluctuations in large 

deviation regime

Constrained Dyck
paths and HOMFLY 

of torus knots

1D
 A

nd
er

so
n 

lo
ca

liz
at

io
n



Conjectures

• Hierarchical (ultrametric) organization occurs
in collective variables when conformational
space is huge, and statistics is rare.

• Such a situation is natural for protein folding,
analysis of statistical properties of genome,
"large data", etc ...

• Another option: ultrametricity occurs as a
conflict between intrinsic geometry of object
and geometry of space of embedding













How to describe the profile?



(R. Voituriez, S.N., J. Phys. A, 2001)
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(R. Voituriez, S.N., J. Phys. A, 2001)



Jupe à godets

(R. Voituriez, S.N., J. Phys. A, 2001)



Growth in a disc Growth in a strip

Exponential proliferation of cells in a thin slit 



When we open the slit, the material relaxes 
into the 3D structure



When we open the slit, the material relaxes 
into the 3D structure

Buckling occurs as a conflict between intrinsic 
geometry of object and geometry of space of 

embedding



Growth induces strain in a tissue near its edge and 
results in: 
(i) in-plane tissue compression and/or redistribution 

of layer cells accompanied by the in-plane 
instability (“stretching”)

(ii) out-of-plane tissue buckling with the formation of 
saddle-like surface regions (“bending”)
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thickness. 



Growth induces strain in a tissue near its edge and 
results in: 
(i) in-plane tissue compression and/or redistribution 

of layer cells accompanied by the in-plane 
instability (“stretching”)

(ii) out-of-plane tissue buckling with the formation of 
saddle-like surface regions (“bending”)

For bending rigidity of a thin membrane B ~ h3, while 
for stretching rigidity, S ~ h, where h is the membrane 
thickness. 
Thin tissues, with h <<1, prefer to bend, i.e. to be 
negatively curved under relatively small critical strain



Formulation of the problem

Exponentially growing colony (hyperbolic structure)
admits Cayley trees as possible discretizations.

The Cayley trees cover the hyperbolic surface
isometrically, i.e. without gaps and
selfintersections, preserving angles and distances.

Our goal is an embedding a Cayley tree into a 3D
Euclidean space with a signature {+1,+1,+1}.

Hilbert theorem prohibits embedding of unbounded
Hyperbolic surface into Euclidean space smoothly
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The relief of the surface is encoded in the coefficient

of deformation, coinciding with the Jacobian J(z ) of
the conformal transform z(z ), where

2( ) /J dz d 
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Isometric embedding of a Cayley tree into 
Poincare disc and a strip 



Isometric embedding of a Cayley tree into 
Poincare disc and a strip 



The metric  ds2  of a 2D surface 
parametrized by (u,v), is given by the 
coefficients 

of the first quadratic form of this surface 

The surface area then reads

Optimal profile – is the surface in which we can 
isometrically embed exponentially growing graph

G F

(S. N., K. Polovnikov, Soft Matter, 2017)



If z(w) is holomorphic, the Cauchy-Riemann 
conditions provide 

Surface embedded in 3D has the same metric as 
Poincare disc



If we impose the condition for a surface to be a 
function above (u,v), then we can write the 
surface element in curvilinear coordinates

Surface embedded in 3D has the same metric as 
Poincare disc



Relief of the surface f (u,v) is defined by the 
eikonal equation



Relief of the surface f (u,v) is defined by the 
eikonal equation

In our case we have to solve 
the equation for the function
f(u,v) given by the conformal 

transform

a-2



Comparing equation

to the standard eikonal equation for the rays in 
optically inhomogeneous media 

𝛻𝑆 2 = 𝑛2(𝑥)
We conclude that the rays propagate along optimal
Fermat paths in Euclidean domain. They are
projections of geodesics of corresponding “eikonal
surface”. The refraction coefficient in this case reads

𝑛2 = 𝑧′ 𝑤 4 − 1

Geometric optic analogy

a-2



The rigidity in our geometric approach is controlled by 
the parameter a – the size of elementary flat domain

Rigid and flexible circular surfaces
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Rigid and flexible circular surfaces



The rigidity in our geometric approach is controlled by 
the parameter a – the size of elementary flat domain

1) If a ≥1, the surface is rigid

2) If 0< a <<1, the surface is flexible

Rigid and flexible circular surfaces

a=0.07 a=0.14



Buckling in a strip



Buckling in a strip



Buckling in a strip

Formation of hierarchical folds due to ultrametricity of 
Dedekind h-function
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1/3d R constd 

stretched paths
above semicircle

stretched paths
above triangle



y x
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( 1)/(2 1)d R   

1/3d R constd 

stretched paths
above semicircle

stretched paths
above triangle

For a curve of order 





HOMFLY polynomial  satisfies skein relation( )( , )P K q a

Consider reduced HOMFLY
( )( , )( )( , )
( )

P K q a
P K q a

P unknot


Torus knots



corners area

Dyck paths
of length 

( )( , )n

n

P K q a a q 

E. Gorsky (2011), and A. Oblomkov, J. Rasmussen, V. Shende
and E. Gorsky (2012) showed that HOMFLY P(K)(a,q) for T(n,n+1)
torus knots can be written as Narayana generating function

Proof involved consideration of Euler characteristic of triply-
graded knot homology in terms of Young diagrams, ,i j kH

, ,
, ,

( )( , , ) dim

( )( , , 1) ( )( , )

i j k

i j k

i j k

P K q a t a q t H

P K q a t P K q a


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



Nekrasov partition 
function as a path 

integral

K. Bulycheva, A. Gorsky, S.N. , Critical behavior in
topological ensembles, 2015

Equivariant integrals 
over moduli space in 
5D U(1) SUSY QED

Superpolynomials of 
Tn,n+1 torus knots

Summation 
over Young 
diagrams 

q-deformed 
(magnetic) random 

walks

Weighted partitions 
function of (1+1)D 

Dyck paths

Extremal statistics of 
(1+1)D “vicious” 
random walks



Having connection between:
small-viscosity Burgers equation

area- and corner-weighted Brownian excursions
HOMFLY polynomials for (n, n+1) torus knots

we may investigate and interpret the 
critical behavior in knot ensembles

What is the physical meaning of singularities 
in knot generating functions?

Conjecture: 

Below and above the critical point the knot 
discrimination is different


