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What happens when another CJKLS invariant is chosen?
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Limits of Infinite Sequences of Knots?

Suppose you are given an infinite sequence of knots with
increasing crossing number

Would it make sense to look for a limit for this sequence?

It would ... to some extent ...

This talk is devoted to showing how this can be done plus
...



Given a sequence what happens if we change
topologies?

... better ask this question again after the first question is
answered ...
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The “hyperfinite algorithm”

Assume you have a knot invariant, f , which takes on
values in a complete metric space, M

Consider the relation on the class of all knots

K ∼ K ′ def .
⇐⇒ f (K ) = f (K ′)

Let Kf denote this quotient space ...

The induced f∼ embeds this quotient space in M

We can then regard Kf as a metric subspace of M

We take the closure of Kf in the topology of M and call it Kf



A picture:

f

f∼

∼

Kf

K

M

Figure: The “hyperfinite” algorithm



The CJKLS invariant toolkit

There is a CJKLS invariant for each choice of



The CJKLS invariant toolkit

There is a CJKLS invariant for each choice of

X - finite quandle



The CJKLS invariant toolkit

There is a CJKLS invariant for each choice of

X - finite quandle

A - abelian group



The CJKLS invariant toolkit

There is a CJKLS invariant for each choice of

X - finite quandle

A - abelian group

φ - 2-co-cycle in H2(X ;A), i.e.,



The CJKLS invariant toolkit

There is a CJKLS invariant for each choice of

X - finite quandle

A - abelian group

φ - 2-co-cycle in H2(X ;A), i.e.,

1 φ(a,a) = 1



The CJKLS invariant toolkit

There is a CJKLS invariant for each choice of

X - finite quandle

A - abelian group

φ - 2-co-cycle in H2(X ;A), i.e.,

1 φ(a,a) = 1

2 φ(a,b)φ(a ∗ b, c) = φ(a, c)φ(a ∗ c, b ∗ c)

Example: φ ≡ 1A
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A crash course on quandle theory

What is the “most economical” algebraic structure

“which preserves the Reidemeister moves”?

with arcs of the diagram as generators and

relations read off at crossings of the sort:

under-arc ∗ over-arc = the other under-arc

... it’s the quandle ...



A crash course on quandle theory (cont’d)

aa

aa

aa

bb

bb

a ∗ b

cc

x

(a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c)

a ∗ a = a

x ∗ b = a

I

II

III

REIDEMEISTER MOVES QUANDLE AXIOMS

Figure: Quandle Axioms vs. Reidemeister moves
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A crash course on quandle theory (cont’d)

The Fundamental quandle of the knot is a classifying
invariant

Unfortunately, there is no algorithm to tell them apart

Count colorings instead (homomorphisms to a fixed
quandle)

or use the CJKLS invariant
which is a sum over these colorings

and specializes to the number of colorings when using the
trivial co-cycle
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Assembling the CJKLS invariant...

Z (K ) :=
∑

colorings by X ,C

∏

crossings,τ

φǫτ
τ (aC ,bC)

In this talk:

X = S4
∼= Z2[T ,T−1]/(T 2 + T + 1) a ∗ b := Ta + (1− T )b

A = Z2
∼= ( t | t2 = 1 )

φ(a, b) =

{
1 , if a = b or a = T or b = T

t , otherwise



The CJKLS invariant of the trefoil:

a b

Ta + (1− T )b

a

b

φ(a,b)

φ(b,Ta + (1− T )b)

φ(Ta + (1− T )b,a)

Figure: The colorings and evaluation of the 2-cocycle at crossings for
the trefoil



The CJKLS invariant of the trefoil (cont’d):

Set
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then
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The CJKLS invariant of the trefoil (cont’d):

Set

Φ(a,b) := φ(a,b) · φ(b,Ta + (1− T )b) · φ(Ta + (1− T )b,a) =

=

{
t , if a 6= b

1 , if a = b

then

Φ(a,b) = t δ̄a,b

and

Z (Trefoil) =
∑

a,b∈{0,1,T ,1+T}

t δ̄a,b = 4(1+3t) ←→ (4,12)



The CJKLS invariant of K2:

a0

a0

a0

a1

a1

a1

a1

a2

a2

a2

Ta0 + (1− T )a1

(T + 1)a2 + Ta1

(T + 1)a2 + Ta1

Φ(a0, a1)

Φ(a1, a2)

Φ(a1, a2)

Figure: K2, upon closure of the braid, endowed with a coloring by S4



The CJKLS invariant of K2 (cont’d):

Z (K2) =
∑

a0,a1,a2∈{0,1,T ,1+T}

Φ(a1,a2)Φ(a0,a1)Φ(a1,a2) =

=
∑

a0,a1,a2∈{0,1,T ,1+T}

t δ̄a0,a1 = 42(1 + 3t)

←→ (42,42 · 3)



The CJKLS invariant of K3:

a0

a0

a0

a1

a1

a1

a1

a2

a2

a2

a2

a2

a3

a3

a3

Φ(a0,a1)

Φ(a1,a2)

Φ(a1,a2)

Φ(a2,a3)

Φ(a2,a3)



The CJKLS invariant of K3:

Z (K3) =

=
∑

a0,...,a3∈{0,1,T ,1+T}

Φ(a2,a3)Φ(a1,a2)Φ(a0,a1)Φ(a1,a2)Φ(a2,a3)

=
∑

a0,...,a3∈{0,1,T ,1+T}

t δ̄a0,a1 = 43(1 + 3t)

←→ (43,43 · 3)



The CJKLS invariant of Kn:

Z (Kn) = 4n(1 + 3t) ←→ (4n,4n · 3)



The sequence of CJKLS invariants of the free energy
per crossing, f , for Kn:

Z (K1) =
(
4,4 · 3

)

f (K1) =

(
ln(4)

3
,
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3
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Z (K1) =
(
4,4 · 3

)

f (K1) =

(
ln(4)

3
,
ln(4 · 3)

3

)
=

(
2 ln(2)

3
,

2 ln(2) + ln(3)
3

)

Z (K2) =
(
42,42 · 3

)

f (K2) =

(
ln(42)

9
,
ln(423)

9

)
=

(
2 · 2 ln(2)

9
,
2 · 2 ln(2) + ln(3)

9

)



The sequences of CJKLS invariant of the free energy
per crossing, f , for Kn (cont’d):

Z (K3) =
(
43,43 · 3

)

f (K3) =

(
ln(43)

15
,
ln(433)

15

)
=

(
2 · 3 ln(2)

15
,
2 · 3 ln(2) + ln(3)

15

)



The sequences of CJKLS invariant of the free energy
per crossing, f , for Kn (cont’d):

Z (K3) =
(
43,43 · 3

)

f (K3) =

(
ln(43)

15
,
ln(433)

15

)
=

(
2 · 3 ln(2)

15
,
2 · 3 ln(2) + ln(3)

15

)

Z (Kn) =
(
4n,4n · 3

)

f (Kn) =

(
ln(4n)

6n− 3
,
ln(4n3)
6n − 3

)
=

(
2n ln(2)
6n − 3

,
2n ln(2) + ln(3)

6n − 3

)

−→
n→∞

(
ln(2)

3
,
ln(2)

3

)



A Hyperfinite knot!

(Kn) represents then a hyperfinite knot “in the formalism”:



A Hyperfinite knot!

(Kn) represents then a hyperfinite knot “in the formalism”:

X = S4
∼= Z2[T ,T−1]/(T 2 + T + 1) a ∗ b := Ta + (1− T )b



A Hyperfinite knot!

(Kn) represents then a hyperfinite knot “in the formalism”:

X = S4
∼= Z2[T ,T−1]/(T 2 + T + 1) a ∗ b := Ta + (1− T )b

A = Z2
∼= ( t | t2 = 1 )
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(Kn) represents then a hyperfinite knot “in the formalism”:

X = S4
∼= Z2[T ,T−1]/(T 2 + T + 1) a ∗ b := Ta + (1− T )b

A = Z2
∼= ( t | t2 = 1 )

φ(a, b) =

{
1 , if a = b or a = T or b = T

t , otherwise
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Are hyperfinite knots stable wrt the CJKLS invariant’s
topologies?

... what if? ...

... we used a different “formalism”, say X ′, A′, φ′ ?

... would (Kn) also represent a hyperfinite knot “in the
formalism” X ′, A′, φ′ ?

That is, are hyperfinite knots stable wrt the CJKLS
invariants’ topologies?
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... relevant evidence? - A Theorem
Theorem:

Given a braid b, consider the sequence of knots

Kn = b̂n

If the crossing number of Kn = b̂n tends to infinity,

and if the labeling quandle is an Alexander quandle,

then the free energy per crossing number is the null vector.

cf. P.L., Sequences of Knots and Their Limits,
in Geometry and Physics: XVI International Fall Workshop,
R. L. Fernandes et al (eds.),
AIP Conference Proceedings, 1023, 183-186, 2008
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... relevant evidence? - Proof of Theorem

Alexander quandles: quotient of modules over Λ := Z[T±1]
...

... by ideals of the sort (p,L(T )), for prime p and Laurent
poly L, ...

and a ∗ b = Ta + (1 − T )b, in the indicated quotient.

Example: X = S4
∼= Z2[T ,T−1]/(T 2 + T + 1)

a ∗ b := Ta + (1− T )b ...



... relevant evidence? - Proof of Theorem (cont’d)

The Burau representation of the braid group and its
connections with colorings by Alexander quandles:

σi 7−→ Ii−1 ⊕

(
0 T
1 1− T

)
⊕ IN−

a1

a2

a2

Ta1 + (1− T )a2

(a1 a2)

(
0 T
1 1− T

)

Figure: The Burau representation of the braid group and its
connections with colorings by Alexander quandles



... relevant evidence? - Proof of Theorem (cont’d)

(a1 a2 a3 · · · aN)B(d) =

= (a1 a2 a3 · · · aN)

· · ·

· · ·

b

a1

a1

a2

a2

a3

a3

aN

aN

Figure: The coloring equation for the knot represented by the
closure of the braid b, whose Burau matrix is B(d). The
equalities are to be understood in the quotient corresponding to
the Alexander quandle at stake.
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... relevant evidence? - Proof of Theorem (cont’d)

Now let us consider the sequence Kn = b̂n.

B(Kn) = [B(b)]n is the Burau matrix of Kn.

The Burau matrices are invertible hence form a finite
group, hence, for each of them, there is a finite order.

Let M be a positive integer such that [B(b)]M = Id .

Let |A| be the order of A, an abelian group. Let X denote
the Alexander quandle at stake and choose a 2-co-cycle φ.
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For each positive integer n, write

n = M|A|ln + rn,

where l,rn are positive integers, and 0 ≤ rn < m|A|.

Then,

Z (Kn) =

=
∑

a1,...,aN∈X
s.t. ...

∏

τ∈c(bn)

φǫτ =
∑

a1,...,aN∈X
s.t. ...

(( ∏

τ∈c(bM )

φǫτ

)|A|)ln

·
∏

τ∈c(brn )

=
∑

a1,...,aN∈X
s.t. ...

(
IdA

)ln

·
∏

τ∈c(brn )

φǫτ =
∑

a1,...,aN∈X
s.t. ...

∏

τ∈c(brn )

φǫτ
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... relevant evidence? - Proof of Theorem (cont’d)

Again

Z (Kn) =
∑

a1,...,aN∈X
s.t. ...︸ ︷︷ ︸

at most M systems of coloring equations

∏

τ∈c(brn )

φǫτ

︸ ︷︷ ︸
at most |A| values of A

If C is the maximum number of solutions over all M
systems of equations, ...

then there are at most MC|A| distinct values for Z (Kn) i.e.,
this sequence is bounded.

Further assuming that the crossing number of this
sequence is increasing then

f (Kn) =

(
Z1(Kn)

c(Kn)
, . . . ,

Z|A|(Kn

c(Kn)

)
−→︸︷︷︸
n 7→∞

(0, . . . ,0︸ ︷︷ ︸
|A| entries

)
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... relevant evidence? - example

Example:

Fix a positive integer N and consider the sequence of torus
knots

(
T (N,n)

)
n∈N. Then:

T (N, n) =
̂(

σN−1σN−2 · · ·σ2σ1

)n

cT (N,n) = min{|N|(|n| − 1), |n|(|N| − 1)} −→
n 7→∞

∞
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Then, according to the Theorem



... relevant evidence? - example (cont’d)

Then, according to the Theorem

No matter which X , A, and φ are chosen -
provided X is an Alexander quandle :

f (T (N, n)) −→
n 7→∞

(0, 0, . . . , 0)
|A| entries
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... relevant evidence? - example (conclusion)

This is an example of “sharp stability”:

Within the indicated subclass of CJKLS topologies,

the sequence converges in all topologies

and to the “same” limit

In other words,

The sequence represents a hyperfinite knot in any
“(Alexander) formalism” – stability

This hyperfinite knot has the “same” invariant in each
“(Alexander) formalism” – “sharpness”
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Some calculations...
Suppose Kn represents a hyperfinite knot in the X , A, φ
formalism i.e.,

for each component of the free energy per crossing, there
is the limit

lim
n→∞

f i
X ,A,φ(Kn) =

= lim
n→∞

1
cKn

ln

([ ∑

colorings by X ,C

∏

crossings,τ

φǫτ
τ (aC ,bC)

]i
)

In particular, the number of unlinked components of Kn,
uKn , has to be such that

lim
n→∞

uKn

cKn

= l <∞

What if we now choose a different formalism on the same
sequence?
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holds:
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Some calculations...(cont’d)

We now fix X ′, A′, φ′ where at least one of the following
holds:

X 6= X ′ A 6= A′ φ 6= φ′

Then

0 ≤ lim
n→∞

f i
X ′,A′,φ′(Kn) ≤

1
cKn

ln

(
|X |cKn · |X |uKn

)
=

=
1

cKn

(cKn + uKn) ln(|X |)

−→
n→∞

(1 + l) ln(|X |)
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Some calculations...(cont’d)

Upshot:

If a sequence converges wrt one CJKLS-formalism then it
is bounded on any other formalism so,

If a sequence converges wrt one CJKLS-formalism then it
has converging subsequences on any other formalism

Let us call this “quasi-stability” of hyperfinite knots wrt the
CJKLS invariants’ topologies



Thank you!
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