The hyperfinite algorithm
 for "sequences" of knots

Pedro Lopes

Instituto Superior Técnico - University of Lisbon
September 21, 2018

Overview

- Limits of sequences of knots - Hyperfinite knots

Overview

- Limits of sequences of knots - Hyperfinite knots
- Knots - Invariants - Quandles - The CJKLS invariant

Overview

- Limits of sequences of knots - Hyperfinite knots
- Knots - Invariants - Quandles - The CJKLS invariant
- The CJKLS invariant in the thermodynamic limit: the free energy per crossing

Overview

- Limits of sequences of knots - Hyperfinite knots
- Knots - Invariants - Quandles - The CJKLS invariant
- The CJKLS invariant in the thermodynamic limit: the free energy per crossing
- Hyperfinite knots: examples

Overview

- Limits of sequences of knots - Hyperfinite knots
- Knots - Invariants - Quandles - The CJKLS invariant
- The CJKLS invariant in the thermodynamic limit: the free energy per crossing
- Hyperfinite knots: examples
- What happens when another CJKLS invariant is chosen?

Limits of Infinite Sequences of Knots?

- Suppose you are given an infinite sequence of knots with increasing crossing number

Limits of Infinite Sequences of Knots?

- Suppose you are given an infinite sequence of knots with increasing crossing number
- Would it make sense to look for a limit for this sequence?

Limits of Infinite Sequences of Knots?

- Suppose you are given an infinite sequence of knots with increasing crossing number
- Would it make sense to look for a limit for this sequence?
- It would ... to some extent ...

Limits of Infinite Sequences of Knots?

- Suppose you are given an infinite sequence of knots with increasing crossing number
- Would it make sense to look for a limit for this sequence?
- It would ... to some extent ...
- This talk is devoted to showing how this can be done plus

Given a sequence what happens if we change topologies?

- ... better ask this question again after the first question is answered ...

The "hyperfinite algorithm"

- Assume you have a knot invariant, f, which takes on values in a complete metric space, M

The "hyperfinite algorithm"

- Assume you have a knot invariant, f, which takes on values in a complete metric space, M
- Consider the relation on the class of all knots

$$
K \sim K^{\prime} \quad \stackrel{\text { def. }}{\Longleftrightarrow} \quad f(K)=f\left(K^{\prime}\right)
$$

The "hyperfinite algorithm"

- Assume you have a knot invariant, f, which takes on values in a complete metric space, M
- Consider the relation on the class of all knots

$$
K \sim K^{\prime} \quad \stackrel{\text { def. }}{\Longleftrightarrow} \quad f(K)=f\left(K^{\prime}\right)
$$

- Let \mathcal{K}_{f} denote this quotient space ...

The "hyperfinite algorithm"

- Assume you have a knot invariant, f, which takes on values in a complete metric space, M
- Consider the relation on the class of all knots

$$
K \sim K^{\prime} \quad \stackrel{\text { def. }}{\Longleftrightarrow} \quad f(K)=f\left(K^{\prime}\right)
$$

- Let \mathcal{K}_{f} denote this quotient space ...
- The induced f^{\sim} embeds this quotient space in M

The "hyperfinite algorithm"

- Assume you have a knot invariant, f, which takes on values in a complete metric space, M
- Consider the relation on the class of all knots

$$
K \sim K^{\prime} \quad \stackrel{\text { def. }}{\Longleftrightarrow} \quad f(K)=f\left(K^{\prime}\right)
$$

- Let \mathcal{K}_{f} denote this quotient space ...
- The induced f^{\sim} embeds this quotient space in M
- We can then regard \mathcal{K}_{f} as a metric subspace of M

The "hyperfinite algorithm"

- Assume you have a knot invariant, f, which takes on values in a complete metric space, M
- Consider the relation on the class of all knots

$$
K \sim K^{\prime} \quad \stackrel{\text { def. }}{\Longleftrightarrow} \quad f(K)=f\left(K^{\prime}\right)
$$

- Let \mathcal{K}_{f} denote this quotient space ...
- The induced f^{\sim} embeds this quotient space in M
- We can then regard \mathcal{K}_{f} as a metric subspace of M
- We take the closure of \mathcal{K}_{f} in the topology of M and call it $\overline{\mathcal{K}_{f}}$

A picture:

Figure: The "hyperfinite" algorithm

The CJKLS invariant toolkit

- There is a CJKLS invariant for each choice of

The CJKLS invariant toolkit

- There is a CJKLS invariant for each choice of
- X - finite quandle

The CJKLS invariant toolkit

- There is a CJKLS invariant for each choice of
- X - finite quandle
- A-abelian group

The CJKLS invariant toolkit

- There is a CJKLS invariant for each choice of
- X - finite quandle
- A-abelian group
- ϕ-2-co-cycle in $H^{2}(X ; A)$, i.e.,

The CJKLS invariant toolkit

- There is a CJKLS invariant for each choice of
- X - finite quandle
- A-abelian group
- ϕ-2-co-cycle in $H^{2}(X ; A)$, i.e.,
(1) $\phi(a, a)=1$

The CJKLS invariant toolkit

- There is a CJKLS invariant for each choice of
- X - finite quandle
- A-abelian group
- ϕ-2-co-cycle in $H^{2}(X ; A)$, i.e.,
(1) $\phi(a, a)=1$
(2) $\phi(a, b) \phi(a * b, c)=\phi(a, c) \phi(a * c, b * c)$

Example: $\phi \equiv 1_{A}$

A crash course on quandle theory

- What is the "most economical" algebraic structure

A crash course on quandle theory

- What is the "most economical" algebraic structure
- "which preserves the Reidemeister moves"?

A crash course on quandle theory

- What is the "most economical" algebraic structure
- "which preserves the Reidemeister moves"?
- with arcs of the diagram as generators and

A crash course on quandle theory

- What is the "most economical" algebraic structure
- "which preserves the Reidemeister moves"?
- with arcs of the diagram as generators and
- relations read off at crossings of the sort:

$$
\text { under-arc } * \text { over-arc }=\text { the other under-arc }
$$

A crash course on quandle theory

- What is the "most economical" algebraic structure
- "which preserves the Reidemeister moves"?
- with arcs of the diagram as generators and
- relations read off at crossings of the sort:

$$
\text { under-arc } * \text { over-arc }=\text { the other under-arc }
$$

A crash course on quandle theory (cont'd)

REIDEMEISTER MOVES

QUANDLE AXIOMS

$$
a * a=a
$$

II

$$
x * b=a
$$

III

Figure: Quandle Axioms vs. Reidemeister moves

A crash course on quandle theory (cont'd)

- The Fundamental quandle of the knot is a classifying invariant

A crash course on quandle theory (cont'd)

- The Fundamental quandle of the knot is a classifying invariant
- Unfortunately, there is no algorithm to tell them apart

A crash course on quandle theory (cont'd)

- The Fundamental quandle of the knot is a classifying invariant
- Unfortunately, there is no algorithm to tell them apart
- Count colorings instead (homomorphisms to a fixed quandle)

A crash course on quandle theory (cont'd)

- The Fundamental quandle of the knot is a classifying invariant
- Unfortunately, there is no algorithm to tell them apart
- Count colorings instead (homomorphisms to a fixed quandle)
- or use the CJKLS invariant

A crash course on quandle theory (cont'd)

- The Fundamental quandle of the knot is a classifying invariant
- Unfortunately, there is no algorithm to tell them apart
- Count colorings instead (homomorphisms to a fixed quandle)
- or use the CJKLS invariant
- which is a sum over these colorings

A crash course on quandle theory (cont'd)

- The Fundamental quandle of the knot is a classifying invariant
- Unfortunately, there is no algorithm to tell them apart
- Count colorings instead (homomorphisms to a fixed quandle)
- or use the CJKLS invariant
- which is a sum over these colorings
- and specializes to the number of colorings when using the trivial co-cycle

Assembling the CJKLS invariant...

$$
Z(K):=\sum_{\text {colorings by } X, C} \prod_{\text {crossings }, \tau} \phi_{\tau}^{\epsilon_{\tau}}\left(a_{C}, b_{C}\right)
$$

Assembling the CJKLS invariant...

-

$$
Z(K):=\sum_{\text {colorings by } X, C} \prod_{\text {crossings }, \tau} \phi_{\tau}^{\epsilon_{\tau}}\left(a_{C}, b_{C}\right)
$$

- In this talk:

Assembling the CJKLS invariant...

$$
Z(K):=\sum_{\text {colorings by } x, C} \prod_{\text {crossings, }, \tau} \phi_{\tau}^{\epsilon_{\tau}}\left(a_{C}, b_{C}\right)
$$

- In this talk:

$$
\text { - } X=S_{4} \cong \mathbb{Z}_{2}\left[T, T^{-1}\right] /\left(T^{2}+T+1\right) \quad a * b:=T a+(1-T) b
$$

Assembling the CJKLS invariant...

$$
Z(K):=\sum_{\text {colorings by } X, C} \prod_{\text {crossings }, \tau} \phi_{\tau}^{\epsilon_{\tau}}\left(a_{C}, b_{C}\right)
$$

- In this talk:
- $X=S_{4} \cong \mathbb{Z}_{2}\left[T, T^{-1}\right] /\left(T^{2}+T+1\right) \quad a * b:=T a+(1-T) b$
- $A=\mathbb{Z}_{2} \cong\left(t \mid t^{2}=1\right)$

Assembling the CJKLS invariant...

$$
Z(K):=\sum_{\text {colorings by } X, C} \prod_{\text {crossings }, \tau} \phi_{\tau}^{\epsilon_{\tau}}\left(a_{C}, b_{C}\right)
$$

- In this talk:
- $X=S_{4} \cong \mathbb{Z}_{2}\left[T, T^{-1}\right] /\left(T^{2}+T+1\right) \quad a * b:=T a+(1-T) b$
- $A=\mathbb{Z}_{2} \cong\left(t \mid t^{2}=1\right)$
-

$$
\phi(a, b)=\left\{\begin{array}{l}
1, \text { if } a=b \text { or } a=T \text { or } b=T \\
t, \text { otherwise }
\end{array}\right.
$$

The CJKLS invariant of the trefoil:

Figure: The colorings and evaluation of the 2-cocycle at crossings for the trefoil

The CJKLS invariant of the trefoil (cont'd):

- Set

$$
\begin{aligned}
\Phi(a, b) & :=\phi(a, b) \cdot \phi(b, T a+(1-T) b) \cdot \phi(T a+(1-T) b, a)= \\
& =\left\{\begin{array}{l}
t, \text { if } a \neq b \\
1, \text { if } a=b
\end{array}\right.
\end{aligned}
$$

The CJKLS invariant of the trefoil (cont'd):

- Set

$$
\begin{aligned}
\Phi(a, b) & :=\phi(a, b) \cdot \phi(b, T a+(1-T) b) \cdot \phi(T a+(1-T) b, a)= \\
& =\left\{\begin{array}{l}
t, \text { if } a \neq b \\
1, \text { if } a=b
\end{array}\right.
\end{aligned}
$$

- then

$$
\Phi(a, b)=t^{\bar{\delta}_{a, b}}
$$

The CJKLS invariant of the trefoil (cont'd):

- Set

$$
\begin{aligned}
\Phi(a, b) & :=\phi(a, b) \cdot \phi(b, T a+(1-T) b) \cdot \phi(T a+(1-T) b, a)= \\
& =\left\{\begin{array}{l}
t, \text { if } a \neq b \\
1, \text { if } a=b
\end{array}\right.
\end{aligned}
$$

- then

$$
\Phi(a, b)=t^{\bar{\delta}_{a, b}}
$$

- and

$$
Z(\text { Trefoil })=\sum_{a, b \in\{0,1, T, 1+T\}} t^{\delta_{a, b}}=4(1+3 t) \longleftrightarrow(4,12)
$$

The CJKLS invariant of K_{2} :

Figure: K_{2}, upon closure of the braid, endowed with a coloring by S_{4}

The CJKLS invariant of K_{2} (cont'd):

$$
\begin{aligned}
Z\left(K_{2}\right)= & \sum_{a_{0}, a_{1}, a_{2} \in\{0,1, T, 1+T\}} \Phi\left(a_{1}, a_{2}\right) \Phi\left(a_{0}, a_{1}\right) \Phi\left(a_{1}, a_{2}\right)= \\
& =\sum_{a_{0}, a_{1}, a_{2} \in\{0,1, T, 1+T\}} t^{\bar{\delta}_{a_{0}, a_{1}}}=4^{2}(1+3 t) \\
& \longleftrightarrow\left(4^{2}, 4^{2} \cdot 3\right)
\end{aligned}
$$

The CJKLS invariant of K_{3} :

The CJKLS invariant of K_{3} :

$$
\begin{aligned}
& Z\left(K_{3}\right)= \\
= & \sum_{a_{0}, \ldots, a_{3} \in\{0,1, T, 1+T\}} \Phi\left(a_{2}, a_{3}\right) \Phi\left(a_{1}, a_{2}\right) \Phi\left(a_{0}, a_{1}\right) \Phi\left(a_{1}, a_{2}\right) \Phi\left(a_{2}, a_{3}\right) \\
= & \sum_{a_{0}, \ldots, a_{3} \in\{0,1, T, 1+T\}} t^{\delta_{a_{0}}, a_{1}}=4^{3}(1+3 t) \\
& \longleftrightarrow\left(4^{3}, 4^{3} \cdot 3\right)
\end{aligned}
$$

The CJKLS invariant of K_{n} :

$$
Z\left(K_{n}\right)=4^{n}(1+3 t)
$$

$\left(4^{n}, 4^{n} \cdot 3\right)$

The sequence of CJKLS invariants of the free energy per crossing, f, for K_{n} :
-

$$
\begin{aligned}
& Z\left(K_{1}\right)=(4,4 \cdot 3) \\
& f\left(K_{1}\right)=\left(\frac{\ln (4)}{3}, \frac{\ln (4 \cdot 3)}{3}\right)=\left(\frac{2 \ln (2)}{3}, \frac{2 \ln (2)+\ln (3)}{3}\right)
\end{aligned}
$$

The sequence of CJKLS invariants of the free energy per crossing, f, for K_{n} :
-

$$
\begin{aligned}
& Z\left(K_{1}\right)=(4,4 \cdot 3) \\
& f\left(K_{1}\right)=\left(\frac{\ln (4)}{3}, \frac{\ln (4 \cdot 3)}{3}\right)=\left(\frac{2 \ln (2)}{3}, \frac{2 \ln (2)+\ln (3)}{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Z\left(K_{2}\right)=\left(4^{2}, 4^{2} \cdot 3\right) \\
& f\left(K_{2}\right)=\left(\frac{\ln \left(4^{2}\right)}{9}, \frac{\ln \left(4^{2} 3\right)}{9}\right)=\left(\frac{2 \cdot 2 \ln (2)}{9}, \frac{2 \cdot 2 \ln (2)+\ln (3)}{9}\right)
\end{aligned}
$$

The sequences of CJKLS invariant of the free energy per crossing, f, for K_{n} (cont'd):
-

$$
\begin{aligned}
& Z\left(K_{3}\right)=\left(4^{3}, 4^{3} \cdot 3\right) \\
& f\left(K_{3}\right)=\left(\frac{\ln \left(4^{3}\right)}{15}, \frac{\ln \left(4^{3} 3\right)}{15}\right)=\left(\frac{2 \cdot 3 \ln (2)}{15}, \frac{2 \cdot 3 \ln (2)+\ln (3)}{15}\right)
\end{aligned}
$$

The sequences of CJKLS invariant of the free energy per crossing, f, for K_{n} (cont'd):
-

$$
\begin{aligned}
& Z\left(K_{3}\right)=\left(4^{3}, 4^{3} \cdot 3\right) \\
& f\left(K_{3}\right)=\left(\frac{\ln \left(4^{3}\right)}{15}, \frac{\ln \left(4^{3} 3\right)}{15}\right)=\left(\frac{2 \cdot 3 \ln (2)}{15}, \frac{2 \cdot 3 \ln (2)+\ln (3)}{15}\right)
\end{aligned}
$$

-

$$
\begin{aligned}
& Z\left(K_{n}\right)=\left(4^{n}, 4^{n} \cdot 3\right) \\
& f\left(K_{n}\right)=\left(\frac{\ln \left(4^{n}\right)}{6 n-3}, \frac{\ln \left(4^{n} 3\right)}{6 n-3}\right)=\left(\frac{2 n \ln (2)}{6 n-3}, \frac{2 n \ln (2)+\ln (3)}{6 n-3}\right)
\end{aligned}
$$

$$
\underset{n \rightarrow \infty}{\longrightarrow}\left(\frac{\ln (2)}{3}, \frac{\ln (2)}{3}\right)
$$

A Hyperfinite knot!

- $\left(K_{n}\right)$ represents then a hyperfinite knot "in the formalism":

A Hyperfinite knot!

- $\left(K_{n}\right)$ represents then a hyperfinite knot "in the formalism":

$$
\text { - } X=S_{4} \cong \mathbb{Z}_{2}\left[T, T^{-1}\right] /\left(T^{2}+T+1\right) \quad a * b:=T a+(1-T) b
$$

A Hyperfinite knot!

- $\left(K_{n}\right)$ represents then a hyperfinite knot "in the formalism":

$$
\begin{aligned}
& \text { - } X=S_{4} \cong \mathbb{Z}_{2}\left[T, T^{-1}\right] /\left(T^{2}+T+1\right) \quad a * b:=T a+(1-T) b \\
& \text { - } A=\mathbb{Z}_{2} \cong\left(t \mid t^{2}=1\right)
\end{aligned}
$$

A Hyperfinite knot!

- $\left(K_{n}\right)$ represents then a hyperfinite knot "in the formalism":
- $X=S_{4} \cong \mathbb{Z}_{2}\left[T, T^{-1}\right] /\left(T^{2}+T+1\right) \quad a * b:=T a+(1-T) b$
- $A=\mathbb{Z}_{2} \cong\left(t \mid t^{2}=1\right)$
-

$$
\phi(a, b)=\left\{\begin{array}{l}
1, \text { if } a=b \text { or } a=T \text { or } b=T \\
t, \text { otherwise }
\end{array}\right.
$$

Are hyperfinite knots stable wrt the CJKLS invariant's topologies?

- ... what if? ...

Are hyperfinite knots stable wrt the CJKLS invariant's topologies?

- ... what if? ...
- ... we used a different "formalism", say $X^{\prime}, A^{\prime}, \phi^{\prime}$?

Are hyperfinite knots stable wrt the CJKLS invariant's topologies?

- ... what if? ...
- ... we used a different "formalism", say $X^{\prime}, A^{\prime}, \phi^{\prime}$?
- ... would $\left(K_{n}\right)$ also represent a hyperfinite knot "in the formalism" $X^{\prime}, A^{\prime}, \phi^{\prime}$?

Are hyperfinite knots stable wrt the CJKLS invariant's topologies?

- ... what if? ...
- ... we used a different "formalism", say $X^{\prime}, A^{\prime}, \phi^{\prime}$?
- ... would $\left(K_{n}\right)$ also represent a hyperfinite knot "in the formalism" $X^{\prime}, A^{\prime}, \phi^{\prime}$?
- That is, are hyperfinite knots stable wrt the CJKLS invariants' topologies?
... relevant evidence? - A Theorem
- Theorem:
... relevant evidence? - A Theorem
- Theorem:
- Given a braid b, consider the sequence of knots

$$
K_{n}=\widehat{b^{n}}
$$

... relevant evidence? - A Theorem

- Theorem:
- Given a braid b, consider the sequence of knots

$$
K_{n}=\widehat{b^{n}}
$$

- If the crossing number of $K_{n}=\widehat{b^{n}}$ tends to infinity,

... relevant evidence? - A Theorem

- Theorem:
- Given a braid b, consider the sequence of knots

$$
K_{n}=\widehat{b^{n}}
$$

- If the crossing number of $K_{n}=\widehat{b^{n}}$ tends to infinity,
- and if the labeling quandle is an Alexander quandle,

... relevant evidence? - A Theorem

- Theorem:
- Given a braid b, consider the sequence of knots

$$
K_{n}=\widehat{b^{n}}
$$

- If the crossing number of $K_{n}=\widehat{b^{n}}$ tends to infinity,
- and if the labeling quandle is an Alexander quandle,
- then the free energy per crossing number is the null vector.

... relevant evidence? - A Theorem

- Theorem:
- Given a braid b, consider the sequence of knots

$$
K_{n}=\widehat{b^{n}}
$$

- If the crossing number of $K_{n}=\widehat{b^{n}}$ tends to infinity,
- and if the labeling quandle is an Alexander quandle,
- then the free energy per crossing number is the null vector.
- cf. P.L., Sequences of Knots and Their Limits, in Geometry and Physics: XVI International Fall Workshop,
R. L. Fernandes et al (eds.),

AIP Conference Proceedings, 1023, 183-186, 2008

... relevant evidence? - Proof of Theorem

- Alexander quandles: quotient of modules over $\Lambda:=\mathbb{Z}\left[T^{ \pm 1}\right]$

... relevant evidence? - Proof of Theorem

- Alexander quandles: quotient of modules over $\wedge:=\mathbb{Z}\left[T^{ \pm 1}\right]$
- ... by ideals of the sort $(p, L(T))$, for prime p and Laurent poly L, ...

... relevant evidence? - Proof of Theorem

- Alexander quandles: quotient of modules over $\wedge:=\mathbb{Z}\left[T^{ \pm 1}\right]$
- ... by ideals of the sort $(p, L(T))$, for prime p and Laurent poly L, \ldots
- and $a * b=T a+(1-T) b$, in the indicated quotient.

... relevant evidence? - Proof of Theorem

- Alexander quandles: quotient of modules over $\wedge:=\mathbb{Z}\left[T^{ \pm 1}\right]$
- ... by ideals of the sort $(p, L(T))$, for prime p and Laurent poly L, ...
- and $a * b=T a+(1-T) b$, in the indicated quotient.
- Example: $X=S_{4} \cong \mathbb{Z}_{2}\left[T, T^{-1}\right] /\left(T^{2}+T+1\right)$ $a * b:=T a+(1-T) b \ldots$

... relevant evidence? - Proof of Theorem (cont'd)

- The Burau representation of the braid group and its connections with colorings by Alexander quandles:

Figure: The Burau representation of the braid group and its connections with colorings by Alexander quandles

... relevant evidence? - Proof of Theorem (cont'd)

${ }^{a_{1}}$| a_{2} | a_{3} | | a_{N} |
| :--- | :--- | :--- | :--- |
| | \mid | \cdots | \mid |

Figure: The coloring equation for the knot represented by the closure of the braid b, whose Burau matrix is $B(d)$. The equalities are to be understood in the quotient corresponding to the Alexander quandle at stake.

... relevant evidence? - Proof of Theorem (cont'd)

- Now let us consider the sequence $K_{n}=\widehat{b^{n}}$.
... relevant evidence? - Proof of Theorem (cont'd)
- Now let us consider the sequence $K_{n}=\widehat{b^{n}}$.
- $B\left(K_{n}\right)=[B(b)]^{n}$ is the Burau matrix of K_{n}.

... relevant evidence? - Proof of Theorem (cont'd)

- Now let us consider the sequence $K_{n}=\widehat{b^{n}}$.
- $B\left(K_{n}\right)=[B(b)]^{n}$ is the Burau matrix of K_{n}.
- The Burau matrices are invertible hence form a finite group, hence, for each of them, there is a finite order.

... relevant evidence? - Proof of Theorem (cont'd)

- Now let us consider the sequence $K_{n}=\widehat{b^{n}}$.
- $B\left(K_{n}\right)=[B(b)]^{n}$ is the Burau matrix of K_{n}.
- The Burau matrices are invertible hence form a finite group, hence, for each of them, there is a finite order.
- Let M be a positive integer such that $[B(b)]^{M}=l d$.
... relevant evidence? - Proof of Theorem (cont'd)
- Now let us consider the sequence $K_{n}=\widehat{b^{n}}$.
- $B\left(K_{n}\right)=[B(b)]^{n}$ is the Burau matrix of K_{n}.
- The Burau matrices are invertible hence form a finite group, hence, for each of them, there is a finite order.
- Let M be a positive integer such that $[B(b)]^{M}=l d$.
- Let $|A|$ be the order of A, an abelian group. Let X denote the Alexander quandle at stake and choose a 2 -co-cycle ϕ.

... relevant evidence? - Proof of Theorem (cont'd)

- For each positive integer n, write

$$
n=M|A| I_{n}+r_{n}
$$

where $\quad l, r_{n}$ are positive integers, and $0 \leq r_{n}<m|A|$.
... relevant evidence? - Proof of Theorem (cont'd)

- For each positive integer n, write

$$
n=M|A| I_{n}+r_{n}
$$

where $\quad l, r_{n}$ are positive integers, and $0 \leq r_{n}<m|A|$.

- Then,
$Z\left(K_{n}\right)=$

$$
\begin{aligned}
& =\sum_{\substack{a_{1}, \ldots, a_{N} \in X \\
\text { s.t. } \ldots}} \prod_{\tau \in c\left(b^{n}\right)} \phi^{\epsilon_{\tau}}=\sum_{\substack{a_{1}, \ldots, a_{N} \in X \\
\text { s.t. } \ldots}}\left(\left(\prod_{\tau \in c\left(b^{M}\right)} \phi^{\epsilon_{\tau}}\right)^{|A|}\right)^{I_{n}} \cdot \prod_{\tau \in c\left(b^{r_{n}}\right)} \\
& =\sum_{\substack{a_{1}, \ldots, a_{N} \in X \\
\text { s.t. } \ldots}}\left(I d_{A}\right)^{I_{n}} \cdot \prod_{\tau \in c\left(b^{r}\right)} \phi^{\epsilon_{\tau}}=\sum_{\substack{a_{1}, \ldots, a_{N} \in X \\
\text { s.t } \ldots}} \prod_{\tau \in c\left(b^{r_{n}}\right)} \phi^{\epsilon_{\tau}}
\end{aligned}
$$

... relevant evidence? - Proof of Theorem (cont'd)

- Again

$$
Z\left(K_{n}\right)=
$$

at most M systems of coloring equations

... relevant evidence? - Proof of Theorem (cont'd)

- Again

$$
Z\left(K_{n}\right)=
$$

at most M systems of coloring equations

- If C is the maximum number of solutions over all M systems of equations, ...

... relevant evidence? - Proof of Theorem (cont'd)

- Again

$$
Z\left(K_{n}\right)=
$$

at most M systems of coloring equations

- If C is the maximum number of solutions over all M systems of equations, ...
- then there are at most $M C|A|$ distinct values for $Z\left(K_{n}\right)$ i.e., this sequence is bounded.
... relevant evidence? - Proof of Theorem (cont'd)
- Again

$$
Z\left(K_{n}\right)=
$$

at most M systems of coloring equations

- If C is the maximum number of solutions over all M systems of equations, ...
- then there are at most $M C|A|$ distinct values for $Z\left(K_{n}\right)$ i.e., this sequence is bounded.
- Further assuming that the crossing number of this sequence is increasing then

... relevant evidence? - Proof of Theorem (cont'd)

- Again

$$
Z\left(K_{n}\right)=
$$

at most M systems of coloring equations

- If C is the maximum number of solutions over all M systems of equations, ...
- then there are at most $M C|A|$ distinct values for $Z\left(K_{n}\right)$ i.e., this sequence is bounded.
- Further assuming that the crossing number of this sequence is increasing then

$$
f\left(K_{n}\right)=\left(\frac{Z_{1}\left(K_{n}\right)}{c\left(K_{n}\right)}, \ldots, \frac{Z_{|A|}\left(K_{n}\right.}{c\left(K_{n}\right)}\right) \underset{n \mapsto \infty}{\longrightarrow}(\underbrace{0, \ldots, 0}_{|A| \text { entries }})
$$

... relevant evidence? - example

- Example:
- Example:
- Fix a positive integer N and consider the sequence of torus knots $(T(N, n))_{n \in \mathbb{N}^{*}}$ Then:
- Example:
- Fix a positive integer N and consider the sequence of torus knots $(T(N, n))_{n \in \mathbb{N}^{*}}$ Then:

$$
T(N, n)=\left(\sigma_{N-1} \sigma_{N-2} \cdots \sigma_{2} \sigma_{1}\right)^{n}
$$

- Example:
- Fix a positive integer N and consider the sequence of torus knots $(T(N, n))_{n \in \mathbb{N}^{-}}$Then:

0

$$
T(N, n)=\left(\sigma_{N-1} \sigma_{N-2} \cdots \sigma_{2} \sigma_{1}\right)^{n}
$$

-

$$
c_{T(N, n)}=\min \{|N|(|n|-1),|n|(|N|-1)\} \underset{n \mapsto \infty}{\longrightarrow} \infty
$$

... relevant evidence? - example (cont'd)

- Then, according to the Theorem
... relevant evidence? - example (cont'd)
- Then, according to the Theorem
- No matter which X, A, and ϕ are chosen provided X is an Alexander quandle:

$$
f(T(N, n)) \quad \underset{n \mapsto \infty}{\longrightarrow} \quad \underset{|A| \text { entries }}{(0,0, \ldots, 0)}
$$

... relevant evidence? - example (conclusion)

- This is an example of "sharp stability":
... relevant evidence? - example (conclusion)
- This is an example of "sharp stability":
- Within the indicated subclass of CJKLS topologies,
... relevant evidence? - example (conclusion)
- This is an example of "sharp stability":
- Within the indicated subclass of CJKLS topologies,
- the sequence converges in all topologies
... relevant evidence? - example (conclusion)
- This is an example of "sharp stability":
- Within the indicated subclass of CJKLS topologies,
- the sequence converges in all topologies
- and to the "same" limit
... relevant evidence? - example (conclusion)
- This is an example of "sharp stability":
- Within the indicated subclass of CJKLS topologies,
- the sequence converges in all topologies
- and to the "same" limit
- In other words,
... relevant evidence? - example (conclusion)
- This is an example of "sharp stability":
- Within the indicated subclass of CJKLS topologies,
- the sequence converges in all topologies
- and to the "same" limit
- In other words,
- The sequence represents a hyperfinite knot in any "(Alexander) formalism" - stability

... relevant evidence? - example (conclusion)

- This is an example of "sharp stability":
- Within the indicated subclass of CJKLS topologies,
- the sequence converges in all topologies
- and to the "same" limit
- In other words,
- The sequence represents a hyperfinite knot in any "(Alexander) formalism" - stability
- This hyperfinite knot has the "same" invariant in each "(Alexander) formalism" - "sharpness"

Some calculations...

- Suppose K_{n} represents a hyperfinite knot in the X, A, ϕ formalism i.e.,

Some calculations...

- Suppose K_{n} represents a hyperfinite knot in the X, A, ϕ formalism i.e.,
- for each component of the free energy per crossing, there is the limit

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f_{X, A, \phi}^{i}\left(K_{n}\right)= \\
& =\lim _{n \rightarrow \infty} \frac{1}{c_{K_{n}}} \ln \left(\left[\sum_{\text {colorings by } X, C} \prod_{\text {crossings }, \tau} \phi_{\tau}^{\epsilon}\left(a_{C}, b_{C}\right)\right]^{i}\right)
\end{aligned}
$$

Some calculations...

- Suppose K_{n} represents a hyperfinite knot in the X, A, ϕ formalism i.e.,
- for each component of the free energy per crossing, there is the limit

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f_{X, A, \phi}^{i}\left(K_{n}\right)= \\
& =\lim _{n \rightarrow \infty} \frac{1}{c_{K_{n}}} \ln \left(\left[\sum_{\text {colorings by } X, C} \prod_{\text {crossings }, \tau} \phi_{\tau}^{\epsilon_{\tau}}\left(a_{C}, b_{C}\right)\right]^{i}\right)
\end{aligned}
$$

- In particular, the number of unlinked components of K_{n}, $u_{K_{n}}$, has to be such that

$$
\lim _{n \rightarrow \infty} \frac{u_{K_{n}}}{c_{K_{n}}}=l<\infty
$$

Some calculations...

- Suppose K_{n} represents a hyperfinite knot in the X, A, ϕ formalism i.e.,
- for each component of the free energy per crossing, there is the limit

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} f_{X, A, \phi}^{i}\left(K_{n}\right)= \\
& =\lim _{n \rightarrow \infty} \frac{1}{c_{K_{n}}} \ln \left(\left[\sum_{\text {colorings by } X, C} \prod_{\text {crossings }, \tau} \phi_{\tau}^{\epsilon_{\tau}}\left(a_{C}, b_{C}\right)\right]^{i}\right)
\end{aligned}
$$

- In particular, the number of unlinked components of K_{n}, $u_{K_{n}}$, has to be such that

$$
\lim _{n \rightarrow \infty} \frac{u_{K_{n}}}{c_{K_{n}}}=l<\infty
$$

- What if we now choose a different formalism on the same sequence?

Some calculations...(cont'd)

- We now fix $X^{\prime}, A^{\prime}, \phi^{\prime}$ where at least one of the following holds:

$$
X \neq X^{\prime} \quad A \neq A^{\prime} \quad \phi \neq \phi^{\prime}
$$

Some calculations...(cont'd)

- We now fix $X^{\prime}, A^{\prime}, \phi^{\prime}$ where at least one of the following holds:

$$
X \neq X^{\prime} \quad A \neq A^{\prime} \quad \phi \neq \phi^{\prime}
$$

- Then

$$
\begin{aligned}
& 0 \leq \lim _{n \rightarrow \infty} f_{X^{\prime}, A^{\prime}, \phi^{\prime}}^{i}\left(K_{n}\right) \leq \frac{1}{c_{K_{n}}} \ln \left(|X|^{c_{K_{n}}} \cdot|X|^{u_{K_{n}}}\right)= \\
&=\frac{1}{c_{K_{n}}}\left(c_{K_{n}}+u_{K_{n}}\right) \ln (|X|) \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow}(1+I) \ln (|X|)
\end{aligned}
$$

Some calculations...(cont'd)

- Upshot:

Some calculations...(cont'd)

- Upshot:
- If a sequence converges wrt one CJKLS-formalism then it is bounded on any other formalism so,

Some calculations...(cont'd)

- Upshot:
- If a sequence converges wrt one CJKLS-formalism then it is bounded on any other formalism so,
- If a sequence converges wrt one CJKLS-formalism then it has converging subsequences on any other formalism

Some calculations...(cont'd)

- Upshot:
- If a sequence converges wrt one CJKLS-formalism then it is bounded on any other formalism so,
- If a sequence converges wrt one CJKLS-formalism then it has converging subsequences on any other formalism
- Let us call this "quasi-stability" of hyperfinite knots wrt the CJKLS invariants' topologies
- Thank you!
- Thank you!
- P. L.,

Hyperfinite knots via the CJKLS invariant in the thermodynamic limit,

Chaos, Solitons and Fractals, 34 (2007), no. 5, 1450-1472

- Thank you!
- P. L.,

Hyperfinite knots via the CJKLS invariant in the thermodynamic limit,

Chaos, Solitons and Fractals, 34 (2007), no. 5, 1450-1472

- P.L.,

Sequences of Knots and Their Limits,
in Geometry and Physics: XVI International Fall Workshop,
R. L. Fernandes et al (eds.),

AIP Conference Proceedings, 1023, 183-186, 2008

