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The setting

X a (compact) smooth manifold;
(L, ht, V%) a Hermitian line bundle on X:

@ L — X a complex line bundle on X:
locally, over some open Q C X,
Ll =2QxC; C®(Q,L|lg) = C>(Q);

@ ht a Hermitian structure in the fibers of L:

s, s el — (s, 8 €C,
@ V! a connection (covariant derivative): for U € C®(X, TX)
Vi C®(X,L) — C™(X, L),

which is Hermitian:

Vi(s, 8 = (VES, ) + (8, V), 8,8 € CP(X,L).
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Preliminaries

Example

e X =RI.
@ L =X x C — X the trivial line bundle, C>*(X, L) = C>(X).
@ The Hermitian structure is given by h € C®(X): for Z ¢ RY
sl = h(Z)Is?, selz={Z} xC;
@ The connection: for any U € C*(X, TX),
Vi C®(X, L) — C>(X, L) is the first order differential operator:

9
L _
Vi =55 +TU).

r=>7,r/(2)dZ € Q'(X) is the connection one-form;
e Viis Hermitian < T +T = —h~'dh.
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Preliminaries

The Bochner-Laplacian

Let (L, ht, V%) be a Hermitian line bundle on X.
The connection can be considered as an operator

Vi=d+r:C®X,L) - C®X, T*X® L)

Fiix a Riemannian metric g on X.
We have L2-inner products on C>(X, L) and C>®(X, T*X ® L):

(5.5 izt = [ (8008 (Nwox). 5.8 € C¥(X.L)
The formally adjoint operator
(VH*: C=(X, T*X ® L) — C=(X, L).
Fors € C*(X,L),s' € C®(X, T*X® L):
(VEs, 8)izix. 7o xon) = (8, (VH)*S) 2 (x.0)-

Yuri A. Kordyukov (Ufa and Novosibirsk) Toeplitz operators on symplectic manifolds September, 2018 4/44



Preliminaries

The Bochner-Laplacian

Definition
The Bochner-Laplacian Al associated with a Hermitian line bundle
(L, ht, vhy:

Al = (vhy vt Cc>(X,L) — C®(X, L).

If {€}j=1,....a is alocal orthonormal frame of TX, then

d

at=-3% {(Véf - VLVZ/.XeJ :
j=1

where VX the Levi-Civita connection of g.
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Example: magnetic Laplacian
@ X =RY,

@ L = X x C the trivial line bundle.
@ The Hermitian structure (h(Z) = 1):

s(2)I5 = [s(Z)[?.

@ The connection form
d
F=—iA, A=) A(2)dz
j=1

is a real-valued one form (a magnetic potential).
@ The Riemannian metric is the standard metric g = 27:1 dZ/?.
@ The Bochner-Laplacian is the magnetic Schrédinger operator:

AL =— Zd: (aaz,- - iAj(Z)>2.

=1
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Preliminaries

The curvature

Let (L, h*, V') be a Hermitian line bundle on X.
The curvature of V% is the differential two-form R on X:

RN (U, V) =ViVy — ViV —Viyy, U, VeTX
For the connection Vi, = % + I'(U), its curvature is given by
Rt =ar.
2
For the magnetic Laplacian AL = — 3¢ | (a%- - iAj(Z)) ,
R =—-iB

where B = dA is a real-valued two form (the magnetic field):

d
B= > Byx(2)dZrdZ,, Bx=—5 — 5.
Jok=1
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Non-degeneracy assumption

We will assume that the differential two form
i
— Rt
2m

is nondegenerate (of full rank):

(w(U,V)=0forany Ve TX)= U=0.
2
For the magnetic Laplacian AL = — Zj‘-’:1 (a% - iA,-(Z)) ,

1
w = 27rB

is non-degenerate.
In particular, the dimension d is even: d = 2n.
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Preliminaries

Relation with geometric quantization

@ (X,w) a symplectic manifold, dim X = 2n, so it is a classical phase
space.

@ A Hermitian line bundle (L, ht, V%) on X, satisfying:

i
_ RL—
o @

is called a prequantum line bundle.

@ (X,w) is called quantizable < there exists a prequantum bundle
(& [w] € H3(X,Z)).

@ In geometric quantization scheme (Kostant-Souriau), the
operators act on sections of L (prequantization).
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Preliminaries

Example: the 2-sphere

@ X the two-dimensional sphere
s = {(x,y,2) eR3: X2+y2+22 =1},

equipped with the Riemannian metric induced by the standard
Euclidean metric in R3.

@ w is a scalar multiple of the volume 2-form dxj:
w=sdxy, SER.

@ (X,w) is quantizable < the area 4rs = n € Z.

@ The corresponding prequantum line bundle (L,, V) is a
well-known Wu-Yang magnetic monopole, which provides a
natural topological interpretation of Dirac’s monopole of magnetic
charge g = nh/2e.
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The renormalized Bochner Laplacian

The renormalized Bochner-Laplacian

@ Jp: TX — TX a skew-adjoint linear endomorphism:
w(u,v) =g(du,v), u,veTX,
@ 7 is a smooth function on X given by
7(x) = 7 Tr[(=(x))/3], xeX.
@ LP the p-th tensor power of L, p € N;

@ Vi : C®(X,LP) — C>=(X, LP) the induced connection on LP:

Vi = % +prtu), UeTX.

Definition (V. Guillemin - A. Uribe, 1988)
The renormalized Bochner-Laplacian Ap acts on C*°(X, LP):

Ap =AY —pr.
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The renormalized Bochner Laplacian

Magnetic Laplacian

@ X =R?" [ = X x C the trivial line bundle.
@ The Hermitian structure |s(2)|2 = |s(Z)/?.

@ The connection form I' = —/A, where A = z ~1Aj(Z2)dZ;is a
real-valued one form.

@ The Bochner-Laplacian
p LD 2 1
A ——jz_;(az /pA(Z)) L P=1
@ Jo = 5-B, where B: TX — TX be a skew-adjoint operator
B(u,v) =g(Bu,v), u,veTX.
e 7(Z)= 5 Tr(B*B)'/2 = Tr™(B).
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The renormalized Bochner Laplacian

Complex manifolds

@ X =C", L= X xC the trivial line bundle.

@ The Hermitian structure is given by h € C>(X): for
z=x+IiyeCn
sfh = h(2)Isl?, se Lz

@ The Hermitian connection
Vi=d+T, T+F=-h"dh

Assume that I' is compatible with the complex structure of C” (a
holomorphic Hermitian connection — the Chern connection),
then, I'is a (1,0)-form:

10h

/

[=0logh= Zh‘ 5592
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The renormalized Bochner Laplacian

Complex manifolds

@ The curvature R = dI is a purely imaginary 2-form: (1, 1)-form
R = 90 log h.

@ For the symplectic form w, we have
i -

@ wis positive if h= e %, ¢ : X — C a smooth strictly
plurisubharmonic function:

n

0% i
27r Z 82,8 kdzj A A2, <azjazk>jk:1,...,n -0
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The renormalized Bochner Laplacian

Kahler manifolds

@ A particular case: the Hermitian structure is given by
82 = h(2)Is)2,  h(z) = e 5P,
@ The connection form
n
F=0logh= —szjdzj;
j=1
@ The symplectic form w is the canonical symplectic form:
i = i & !
w=5-00logh= §Zdz,Adzj = dxAdy.
j=1 j=1

@ Jp is a complex structure, the standard complex structure on C”.
@ wis a Kahler form on C" and (C", Jp) is a Kéhler manifold.
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The renormalized Bochner Laplacian

o 7(z)=nTr[(—J3(2))!/?3 =2rn,z € X.
@ The Kodaira-Laplacian:

—p. = 0
1P _ FLPxFLP _
=00 2 Z (82 ) 0z’

@ For the renormalized Bochner-LapIaman, we have

APZQDLP'
n -
p p
Dp=-) (V(g/ax,-)2 + (vg/ay/)ﬂ —2rnp
=
"1/ 9 2 o 2
- = —7PZ | + | 5 —7ipZ —2mnp
;_(3)(/ p’> (ay,- p/)]
B j=1 _6x2 8y/ jazj

AWMV EE RO JISNIM  Toeplitz operators on symplectic manifolds September, 2018 16/44



Generalized Bergman projections and Toeplitz operators

The almost complex structure

@ Jp: TX — TX a skew-adjoint linear endomorphism such that
w(u,v) =g(du,v), u,veTX;
@ J: TX — TX the linear endomorphism given by
J = Jo(—J2)712.

@ Jis an almost complex structure on X, J2 = —ldry, compatible
with w and g:

w(du,dv) = w(u,v), g(Ju,dv)=g(u,v), u,veTX.
@ w is positive: foru e TX \ 0
w(u, Ju) = —g(Jdu, u) = g((—J2)"2u,u) > 0.
e If Jy = J and J is integrable, then (X, J) is a K&hler manifold.
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Spectral gap property

Theorem (Guillemin-Uribe, 1988; Ma-Marinescu, 2002)
There exists C; > 0 such that for any p

U(AP) - [_CLJ CL] U [2p/~’LO - CL7 +OO)7
where the constant pq is given by

iR:(u, J(x)u)

HO = heTixoxex ulz
Example
((B*B)"/*u|? ]
= inf —————9 = inf inf(B*B(x))"/2.
HO = &Tx ulg xex (B"B(x))
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Generalized Bergman projection

@ 7, the linear subspace of L2(X, LP) spanned by the eigensections
of Ap corresponding to eigenvalues in [-Cy, C;] (small
eigenvalues).

@ Py, the orthogonal projection in L2(X, LP) onto H,, (generalized
Bergman projection).
Example

(X,w) a compact Kéhler manifold, L a holomorphic line bundle:
o Ap =20, where O is the Kodaira Laplacian on LP:

o(Ap) C {0} U [2puo — Cp, +00),

@ 7, is the space H°(X, LP) of holomorphic sections of LP.
@ Py, the usual Bergman projection.
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Generalized Bergman projections and Toeplitz operators

Toeplitz operators

A Toeplitz operator is a sequence of bounded linear operators
Tp: L3(X,LP) — L3(X,LP),p e N:
@ For any p € N, we have
@ There exists a sequence g; € C*°(X) such that
Tp = Py, (Z p’g/> Py, +O(p~),
1=0
i.e. for any natural k there exists Cx > 0 such that

k

1=0

< Cep .
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Generalized Bergman projections and Toeplitz operators

Toeplitz operators

For any p, the operator T, acts on a finite-dimensional space H.
The dimension of H,, is given, for p large enough, by the
Riemann-Roch-Hirzebruch formula

dp 1= dim Hp = (ch(LP) Td(TX), [X]).

Here ch(LP) is the Chern character of LP and Td(TX) is the Todd class
of the tangent bundle TX considered as a complex vector bundle with
complex structure J. In particular,

wn
dpwp”/xnl, p — 00.
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Algebra of Toeplitz operators

Theorem (Yu.K., 2017, loos-Lu-Ma-Marinescu, 2017)
The product Ty , Tg p of the Toeplitz operators
Ttp = Pu,fPy,, Tgp= P, 9Py, f,geC>(X),

is a Toeplitz operator. It admits the asymptotic expansion

TipTgp = Z P Terg)p +OP™),
r=0
with some C,(f, g) € C>(X), where C, are bidifferential operators:

CO(fag):fga C1(f,g)—C1(f,g):i{f,g}7

where {f, g} is the Poisson bracket on (X, 2rw).
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Spectral properties of Toeplitz operators

Wells and localization of eigenfunctions

A self-adjoint Toeplitz operator T, with principal symbol h:

To = Py, <Z p’g/> P, +O(P~>), go=h.
/=0

An obvious lower bound:

(Tov,v) > (inf h(x) +O(p™ Nivll, veLEX,LP).
Indeed, for Tpp = Py, hP3, and v € Hp,

(Togtit) = [ ROOIWOOPdvg(x) > inf A(x)Jul®

AWMV EE RO JISNIM  Toeplitz operators on symplectic manifolds September, 2018

23/ 44



Spectral properties of Toeplitz operators

Wells and localization of eigenfunctions

Let hy € R. Suppose )\, is a sequence of eigenvalues of T, such that
Ao < hy < hy, peN,
then the corresponding normalized eigensection up, of Tp:
ThpUp = ApUp, Pup = Up, [|Up| =1
should be localized in the well
Un, = {x € X : h(x) < ho}.
Classically forbidden domain

X\ Up, ={x € X:h(x)> ho}.

AWMV EE RO JISNIM  Toeplitz operators on symplectic manifolds September, 2018 24 /44



Tunneling estimates

Assume that there exist C > 0 and a > 0 such that for any p € N and
(x,y) e X x X,

(To = PryhPr,)(x, y)| < Cp~'e avPatay),

Theorem (Y.K., 2018)

Suppose that up € Hp, ||Up|| = 1, is a sequence of eigenfunctions of
Tp, ToUp = ApUp, Such that

A< hy <hy, peN.

There exist « > 0 and Cy > 0 such that, for any p € N,

/ e2v/PIUny) |y () el (x) < Ci.
X
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Asymptotic expanisions of low-lying eigenvalues

A self-adjoint Toeplitz operator T, with principal symbol h:

To=Pru, [ D P91 | P, + O(p™), go=h.
=0

Without loss of generality, we will assume that the principal symbol h

satisfies the condition:
min h(x) = 0.

xeX

The spectrum of T, consists of a finite number of eigenvalues

dp—1

<A< <A

p\

The asymptotic properties of A7 in the semiclassical limit p — oo.
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Asymptotic expanisions of low-lying eigenvalues

The Bergman projection

Let xo € X be a non-degenerate minimum of h:
Hess h(Xo) > 0.

The model operator for A, at xp:

2n 9 1 2
to==3 (55 + 3Ph(Z:9)) —r(0)

@ {e;}j—1,.2nis an orthonormal base in Ty X.

e .9, the ordinary differentiation operator on T, X in the direction
Ue Ty,X.

Px, the orthogonal projection in L2(TXOX) to the kernel of L, (the
Bergman projection of Lg).
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Asymptotic expanisions of low-lying eigenvalues

The Bergman kernel
Jx @ Tx,X — Tx, X is a skew-adjoint operator such that
R (u,v) = g(Ju,v), u,veTX.

Actually, 7 = —2miJg.
We choose an orthonormal basis {¢;: j = 1,...,2n} of T X

Txo2k—1 = Ak€2k, JTxo€2k = —@kE2k—1, a >0 k=1,....n
We use this basis to define the coordinates Z on T, X = R2" as well as

the complex coordinates z on C" 2 R?", z; = Zy; 1 + iZpj,j =1,...,N.
The smooth Schwartz kernel (with respect to dvrx(Z)) of Py,:

1 _
P(Z,2) = H gexp | —4 > al|z? + 12)1? - 22Z))
j
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Asymptotic expanisions of low-lying eigenvalues

The Toeplitz operator Ty, in L2( Ty, X) (the model operator for Tp at xp):

7;(0 = PXO(qXO(Z) + 01 (XO))PXov

@ gyx,(Z) the second order term in the Taylor expansion of h at xp (in
normal coordinates near xg):

0 (2) = (;Hess h(x0)Z, z> L ZeTX,

ia positive quadratic form on T, X = R2".
@ g, is the second coefficient in the asymptotic expansion for {7} .

It is an unbounded self-adjoint operator in L2( Ty, X) with discrete
spectrum. The eigenvalues of 7, do not depend on the choice of
normal coordinates, and the lowest eigenvalue is simple.
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Asymptotic expanisions of low-lying eigenvalues

Eigenvalue asymptotic expansions

Assume that the principal symbol h satisfies the following conditions:
@ h(x) > 0forany x € X;
@ minyex h(x) =0;
@ Each minimum is non-degenerate.

Then Uy = {x € X : h(x) = 0} is a finite set (discrete wells):

Uo = {X1,...,XN}.
Let 7 be the self-adjoint operator on L2(T,, X) @ ... ® L?( Ty, X)

T=Tx®...0Txy.
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Asymptotic expanisions of low-lying eigenvalues

Theorem (Y.K. (2018), A. Deleporte (2017, for Kahler manifolds))

Let {\7'} be the increasing sequence of the eigenvalues of T, on 1,
(counted with multiplicities) and {um} the increasing sequence of the
eigenvalues of T (counted with multiplicities). Then, for any fixed m,
Ap has an asymptotic expansion, when p — oo, of the form

AY =P m + P Ppm+ O(p~2).

Theorem (Y.K. (2018), A. Deleporte (2017, for Kahler manifolds))

If v is a simple eigenvalue of Ty, for some j, then there exists a
sequence \p of eigenvalues of T, on H, which has a complete
asymptotic expansion of the form

—+00
Mep D ap ™, ag=p
k=0
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Asymptotic expanisions of low-lying eigenvalues

Toeplitz operator 7(Q) in L2(C")
T(Q) = PQ: ker Lo C L2(C") — ker Lo C L2(C"),

where Q = Q(z, z) is a polynomial in C" and P is the orthogonal
projection in L2(C") to the kernel of L.

Fock space Fj, is the space of holomorphic functions F in C" such that
ez F e L2(Cn).

Fnis a closed subspace in L2(C"; e~212F dz).

The orthogonal projection I : L2(C"; e‘%‘z|2dz) — Fn:

hn

NF(z) = 1/ exp (|2 +2-2) F(2) oz dZ.
(Cn
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Asymptotic expanisions of low-lying eigenvalues

Consider the isometry S : L2(C™; e~2/2* dz) — L[2(C") given, for
u e L3(C™ e 217Pdz), by

Su(z) = H/2,1, Ve iTialaly u(¢(2)),

where ¢ : C" — C" is a linear isomorphism given by

#(z2) = <\/\/§z1,...,\/\/?zn>, zeC".

It is easy to see that SIS~—! = P. It follows that S(F,) = ker £ and
T(Q)=ST°(Qo ¢ ")S™!
where 7°(Q) is a Toeplitz operator in the Fock space defined by

T°(Q) =NQ: Fr — Fp.
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Asymptotic expanisions of low-lying eigenvalues

Bargmann transform

The Bargmann transform is an isometry B : L?(R") — F, defined by

Bf(z) = 7r‘”/4/ exp [— (;z-z+ %x X —V2z. xﬂ f(x)dx, zeC".
Rn

For the position and momentum operators in the Schrédinger

presentation Qx = xx, Pk = , dx , the corresponding operators in the
Bargmann-Fock presentation

1 0 1 0
BB = —— — BB 1= i - ).
Qk /2 <Zk + 8zk> ) Pk \@I <Zk 8zk>

For the creation and annihilation operators ax = %(&k + iPk),

a; = %(@k — ipx), the corresponding operators in the Bargmann-Fock
presentation
0
BaB'=_—, BaB =
A Ozk’ 8
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Asymptotic expanisions of low-lying eigenvalues

e Forany F € [3(C™; e~217F dz), - MF = NZF;
@ Forany F € Fp, z«NF = N(zF).

Let P be a polynomial in C". If we write P as

ZAk/z Bz Zh

then, for any F € Fp,
TO(P)F =N(P(z,2)F) = P(0z, 2)F,

where P(9;, z) is the operator in F, given by

o l
1 n
82, E Ak/ k1...aznnZ1...Zn.
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Anti-Wick symbols (Berezin, 1971)

@ Under the Bargmann transform B, the operator 7°(P) in F,
corresponds to the operator B~'79(P)B in L2(R") given by

BITOP)B = Acd...&n(a)" ... (&)

@ The operator B~79(P)B is the differential operator with
polynomial coefficients in R”;

@ P(z,z) is the anti-Wick symbol of B~'7°(P)B (the Schrédinger
presentation) and 7°(P) (the Bargmann-Fock presentation);

@ Some sufficient conditions of self-adjointness of the operator
B~'P(0,, z)B (Berezin, 1971).
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Asymptotic expanisions of low-lying eigenvalues

One can compute the Weyl symbol of this operator by the well-known
formula (Berezin, 1971). If P is a positive definite quadratic form, then

tr(P)

B~'T°(P)B = Opw(P) + 5

where P is a quadratic form on R2", corresponding to P under the
linear isomorphism (x,¢) € R2" = T*R" s z € C™

1
— (X — i), k=1,...,n.
\@(k &k)

Opw(P) is the pseudodifferential operator in R” with Weyl symbol P.

Zy =
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Applications to the Bochner Laplacian

The Bochner-Laplacian AY:
L — (VP vl Cc>®(X, LP) — C®(X, LP).
7 is a smooth function on X:

T(x) = 7 Tr[(—J2(x))"?], xeX.

For the magnetic Laplacian AL = Z/ ’ (82 iA; (z))

T(x) = %Tr(B*B)VZ = Trt(B).

Assumptions
@ minyex 7(X) = 70;
@ There exists a unique xo € X such that 7(x) = 79, which is

non-degenerate:
Hess 7(xg) > 0.
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Applications to the Bochner Laplacian

Schrddinger operator type representation
ALP _ (VLP)*VLP _ Ap 1 pr,
the renormalized Bochner-Laplacian A, satisfies the gap property:

U(AP) - [_CLJ CL] U [2p/~’60 - CL7 +OO)7

Hp corresponds to the lowest Landau levels.

Upper estimates for \;(AL") (the Rayleigh-Ritz technique):

N(AYY < X(Pu,AYPy), jeN.
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Applications to the Bochner Laplacian

The operator
p_1 PHDALPPHP = p_1 PHpApPHp + PHpTPHp
is a Toeplitz operator:

p Py, A Py, = Py, > plgr| P, + O(p™).
=0

The leading term
Go(x) = 7(X).
The next term is the principal symbol of Ap Py,

91(x) = Jy 2(x).
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Applications to the Bochner Laplacian

Computation of J; »

Put

o _1( 9 .0 o _1( 0 0
82, _2 822/‘_1 822/ ’ 82] 2 322]1 822]

Let R(Z) = Z ", Zie; = Z denote the radial vector field on T, X.
Define first order differential operators by, bj+,j =1,...,n,0n Ty, X by

bj= -2V o —Rg(R. ) b =2V o +Rg(R, 5%).
82/' 82/

So we can write
2n 9 1 2
Ly :_Z<a+2RL (z,e,) (%) = Zb,b+
€
Jj=
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Applications to the Bochner Laplacian

Fi2x,(0,0)
'PXO(O, 0) ’

where Fj > , is an unbounded linear operator in L2(TXOX) given by

Ji2(x0) = Fi2x(Z,Z") = [PxyFi12.xPxl(Z,Z),

<(v VXD ) + ot (VXVX(U)) )

SIVENRE + g (VAR &) b7 £5"6 (VDR )
If Jop = J (almost-Kahler), then

LO

’
Ji2(x0) = QWXJ\)%O-

Here if {g;} is a local orthonormal frame of (TX, g'¥), then
VXU = Z\ (Vad)el?.

AW OA(VEE RO JISSI  Toeplitz operators on symplectlc manifolds September, 2018 42/ 44



Applications to the Bochner Laplacian

Upper bounds for eigenvalues
Consider the Toeplitz operator Ty, in L2( Ty, X) defined by
7;(0 = PXo(qXO(Z) + Ji 72()(0))7DX0'

where 1
Qx,(Z) = <2Hess7'(X0)Z, Z) . Ze TyX.

Let {\;j(AL")} be the increasing sequence of the eigenvalues of the
operator AY (counted with multiplicities) and {1} be the increasing
sequence of the eigenvalues of 7, (counted with multiplicities).

Theorem (Yu. K. (2018))
For any j € N, there exists ¢; € R such that

MN(AY) < pro + i+ p 24+ O(p"),  p— o
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Applications to the Bochner Laplacian

2D-magnetic Laplacian

In particular, for the 2D-magnetic Laplacian on a Riemann surface X:
B = b(x)dvy, dvy=/gdxy A dxz,

assume b(x) > 0 for any x € X and there exists a unique xp such that

b(xp) = bp := min b(x),

xeX

if we denote
1 1/2 1
a="Tr <2Hess b(X0)> , d=det <2Hess b(Xo)> .

we have (Helffer-Y.K., 2010, Helffer-Morame, 2001):

2d1/2. g
b ' T 2p,

N(AF) < pbg + +Cp '3 jeN
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