Asymptotic spectral analysis of Toeplitz operators on symplectic manifolds

Yuri A. Kordyukov

Ufa Federal Research Centre RAS and Novosibirsk State University
Topological structures in mathematics, physics and biology,
Novosibirsk, September, 2018

The setting

X a (compact) smooth manifold;
$\left(L, h^{L}, \nabla^{L}\right)$ a Hermitian line bundle on X :

- $L \rightarrow X$ a complex line bundle on X :
locally, over some open $\Omega \subset X$,
$\left.L\right|_{\Omega} \cong \Omega \times \mathbb{C} ; C^{\infty}\left(\Omega,\left.L\right|_{\Omega}\right) \cong C^{\infty}(\Omega) ;$
- h^{L} a Hermitian structure in the fibers of L :

$$
s, s^{\prime} \in L \rightarrow\left(s, s^{\prime}\right)_{h^{L}} \in \mathbb{C}
$$

- ∇^{L} a connection (covariant derivative): for $U \in C^{\infty}(X, T X)$

$$
\nabla_{U}^{L}: C^{\infty}(X, L) \rightarrow C^{\infty}(X, L)
$$

which is Hermitian:

$$
\nabla_{U}^{L}\left(s, s^{\prime}\right)_{h^{L}}=\left(\nabla_{U}^{L} s, s^{\prime}\right)_{h^{L}}+\left(s, \nabla_{U}^{L} s^{\prime}\right)_{h^{L}}, \quad s, s^{\prime} \in C^{\infty}(X, L) .
$$

Example

- $X=\mathbb{R}^{d}$.
- $L=X \times \mathbb{C} \rightarrow X$ the trivial line bundle, $C^{\infty}(X, L) \cong C^{\infty}(X)$.
- The Hermitian structure is given by $h \in C^{\infty}(X)$: for $Z \in \mathbb{R}^{d}$

$$
|s|_{h}^{2}=h(Z)|s|^{2}, \quad s \in L_{Z}=\{Z\} \times \mathbb{C}
$$

- The connection: for any $U \in C^{\infty}(X, T X)$,
$\nabla_{U}^{L}: C^{\infty}(X, L) \rightarrow C^{\infty}(X, L)$ is the first order differential operator:

$$
\nabla_{U}^{L}=\frac{\partial}{\partial U}+\Gamma(U)
$$

$\Gamma=\sum_{j=1}^{d} \Gamma_{j}(Z) d Z^{j} \in \Omega^{1}(X)$ is the connection one-form;

- ∇^{L} is Hermitian $\Leftrightarrow \Gamma+\bar{\Gamma}=-h^{-1} d h$.

The Bochner-Laplacian

Let $\left(L, h^{L}, \nabla^{L}\right)$ be a Hermitian line bundle on X.
The connection can be considered as an operator

$$
\nabla^{L}=d+\Gamma: C^{\infty}(X, L) \rightarrow C^{\infty}\left(X, T^{*} X \otimes L\right)
$$

Fiix a Riemannian metric g on X.
We have L^{2}-inner products on $C^{\infty}(X, L)$ and $C^{\infty}\left(X, T^{*} X \otimes L\right)$:

$$
\left(s, s^{\prime}\right)_{L^{2}(X, L)}=\int_{X}\left(s(x), s^{\prime}(x)\right)_{h^{L}} d v_{g}(x), \quad s, s^{\prime} \in C^{\infty}(X, L)
$$

The formally adjoint operator

$$
\left(\nabla^{L}\right)^{*}: C^{\infty}\left(X, T^{*} X \otimes L\right) \rightarrow C^{\infty}(X, L)
$$

For $s \in C^{\infty}(X, L), s^{\prime} \in C^{\infty}\left(X, T^{*} X \otimes L\right)$:

$$
\left(\nabla^{L} s, s^{\prime}\right)_{L^{2}\left(X, T^{*} X \otimes L\right)}=\left(s,\left(\nabla^{L}\right)^{*} s^{\prime}\right)_{L^{2}(X, L)}
$$

The Bochner-Laplacian

Definition

The Bochner-Laplacian Δ^{L} associated with a Hermitian line bundle $\left(L, h^{L}, \nabla^{L}\right)$:

$$
\Delta^{L}=\left(\nabla^{L}\right)^{*} \nabla^{L}: C^{\infty}(X, L) \rightarrow C^{\infty}(X, L)
$$

If $\left\{e_{j}\right\}_{j=1, \ldots, d}$ is a local orthonormal frame of $T X$, then

$$
\Delta^{L}=-\sum_{j=1}^{d}\left[\left(\nabla_{e_{j}}^{L}\right)^{2}-\nabla_{\nabla_{e_{j}}^{T X} e_{j}}^{L}\right],
$$

where $\nabla^{T X}$ the Levi-Civita connection of g.

Example: magnetic Laplacian

- $X=\mathbb{R}^{d}$.
- $L=X \times \mathbb{C}$ the trivial line bundle.
- The Hermitian structure $(h(Z)=1)$:

$$
|s(Z)|_{h}^{2}=|s(Z)|^{2}
$$

- The connection form

$$
\Gamma=-i \mathbf{A}, \quad \mathbf{A}=\sum_{j=1}^{d} A_{j}(Z) d Z_{j}
$$

is a real-valued one form (a magnetic potential).

- The Riemannian metric is the standard metric $g=\sum_{j=1}^{d} d Z_{j}^{2}$.
- The Bochner-Laplacian is the magnetic Schrödinger operator:

$$
\Delta^{L}=-\sum_{j=1}^{d}\left(\frac{\partial}{\partial Z_{j}}-i A_{j}(Z)\right)^{2}
$$

The curvature

Let $\left(L, h^{L}, \nabla^{L}\right)$ be a Hermitian line bundle on X. The curvature of ∇^{L} is the differential two-form R^{L} on X :

$$
R^{L}(U, V)=\nabla_{U}^{L} \nabla_{V}^{L}-\nabla_{V}^{L} \nabla_{U}^{L}-\nabla_{[U, V]}^{L}, \quad U, V \in T X .
$$

For the connection $\nabla_{U}^{L}=\frac{\partial}{\partial U}+\Gamma(U)$, its curvature is given by

$$
R^{L}=d \Gamma .
$$

For the magnetic Laplacian $\Delta^{L}=-\sum_{j=1}^{d}\left(\frac{\partial}{\partial Z_{j}}-i A_{j}(Z)\right)^{2}$,

$$
R^{L}=-i \mathbf{B}
$$

where $\mathbf{B}=d \mathbf{A}$ is a real-valued two form (the magnetic field):

$$
\mathbf{B}=\sum_{j, k=1}^{d} B_{j k}(Z) d Z_{j} \wedge d Z_{k}, \quad B_{j k}=\frac{\partial A_{k}}{\partial Z_{j}}-\frac{\partial A_{j}}{\partial Z_{k}}
$$

Non-degeneracy assumption

We will assume that the differential two form

$$
\omega=\frac{i}{2 \pi} R^{L}
$$

is nondegenerate (of full rank):

$$
(\omega(U, V)=0 \text { for any } V \in T X) \Rightarrow U=0
$$

For the magnetic Laplacian $\Delta^{L}=-\sum_{j=1}^{d}\left(\frac{\partial}{\partial Z_{j}}-i A_{j}(Z)\right)^{2}$,

$$
\omega=\frac{1}{2 \pi} \mathbf{B}
$$

is non-degenerate.
In particular, the dimension d is even: $d=2 n$.

Relation with geometric quantization

- (X, ω) a symplectic manifold, $\operatorname{dim} X=2 n$, so it is a classical phase space.
- A Hermitian line bundle $\left(L, h^{L}, \nabla^{L}\right)$ on X, satisfying:

$$
\frac{i}{2 \pi} R^{L}=\omega
$$

is called a prequantum line bundle.

- (X, ω) is called quantizable \Leftrightarrow there exists a prequantum bundle $\left(\Leftrightarrow[\omega] \in H^{2}(X, \mathbb{Z})\right.$).
- In geometric quantization scheme (Kostant-Souriau), the operators act on sections of L (prequantization).

Example: the 2-sphere

- X the two-dimensional sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}
$$

equipped with the Riemannian metric induced by the standard Euclidean metric in \mathbb{R}^{3}.

- ω is a scalar multiple of the volume 2-form $d x_{g}$:

$$
\omega=s d x_{g}, \quad s \in \mathbb{R}
$$

- (X, ω) is quantizable \Leftrightarrow the area $4 \pi s=n \in \mathbb{Z}$.
- The corresponding prequantum line bundle $\left(L_{n}, \nabla_{n}\right)$ is a well-known Wu-Yang magnetic monopole, which provides a natural topological interpretation of Dirac's monopole of magnetic charge $g=n h / 2 e$.

The renormalized Bochner-Laplacian

- $J_{0}: T X \rightarrow T X$ a skew-adjoint linear endomorphism:

$$
\omega(u, v)=g\left(J_{0} u, v\right), \quad u, v \in T X
$$

- τ is a smooth function on X given by

$$
\tau(x)=\pi \operatorname{Tr}\left[\left(-J_{0}^{2}(x)\right)^{1 / 2}\right], \quad x \in X
$$

- L^{p} the p-th tensor power of $L, p \in \mathbb{N}$;
- $\nabla_{U}^{L^{p}}: C^{\infty}\left(X, L^{p}\right) \rightarrow C^{\infty}\left(X, L^{p}\right)$ the induced connection on L^{p} :

$$
\nabla_{U}^{L^{p}}=\frac{\partial}{\partial U}+p \Gamma^{L}(U), \quad U \in T X
$$

Definition (V. Guillemin - A. Uribe, 1988)
The renormalized Bochner-Laplacian Δ_{p} acts on $C^{\infty}\left(X, L^{p}\right)$:

$$
\Delta_{p}=\Delta^{L^{p}}-p \tau
$$

Magnetic Laplacian

- $X=\mathbb{R}^{2 n}, L=X \times \mathbb{C}$ the trivial line bundle.
- The Hermitian structure $|s(Z)|_{h}^{2}=|s(Z)|^{2}$.
- The connection form $\Gamma=-i \mathbf{A}$, where $\mathbf{A}=\sum_{j=1}^{2 n} A_{j}(Z) d Z_{j}$ is a real-valued one form.
- The Bochner-Laplacian

$$
\Delta^{L^{p}}=-\sum_{j=1}^{2 n}\left(\frac{\partial}{\partial Z_{j}}-i p A_{j}(Z)\right)^{2}, \quad p=\frac{1}{\hbar}
$$

- $J_{0}=\frac{1}{2 \pi} B$, where $B: T X \rightarrow T X$ be a skew-adjoint operator

$$
\mathbf{B}(u, v)=g(B u, v), \quad u, v \in T X
$$

- $\tau(Z)=\frac{1}{2} \operatorname{Tr}\left(B^{*} B\right)^{1 / 2}=\operatorname{Tr}^{+}(B)$.

Complex manifolds

- $X=\mathbb{C}^{n}, L=X \times \mathbb{C}$ the trivial line bundle.
- The Hermitian structure is given by $h \in C^{\infty}(X)$: for $z=x+i y \in \mathbb{C}^{n}$

$$
|s|_{h}^{2}=h(z)|s|^{2}, \quad s \in L_{z}
$$

- The Hermitian connection

$$
\nabla^{L}=d+\Gamma, \quad \Gamma+\bar{\Gamma}=-h^{-1} d h ;
$$

Assume that Γ is compatible with the complex structure of $\mathbb{C}^{n}(a$ holomorphic Hermitian connection - the Chern connection), then, Γ is a $(1,0)$-form:

$$
\Gamma=\partial \log h=\sum_{j=1}^{n} h^{-1} \frac{\partial h}{\partial z_{j}} d z_{j}
$$

Complex manifolds

- The curvature $R=d \Gamma$ is a purely imaginary 2-form: $(1,1)$-form

$$
R=\bar{\partial} \partial \log h
$$

- For the symplectic form ω, we have

$$
\omega=\frac{i}{2 \pi} \bar{\partial} \partial \log h
$$

- ω is positive if $h=e^{-\varphi}, \varphi: X \rightarrow \mathbb{C}$ a smooth strictly plurisubharmonic function:

$$
\omega=\frac{i}{2 \pi} \sum_{j, k=1}^{n} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}} d z_{j} \wedge d \bar{z}_{k}, \quad\left(\frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}\right)_{j, k=1, \ldots, n}>0
$$

Kähler manifolds

- A particular case: the Hermitian structure is given by

$$
|s|_{h}^{2}=h(z)|s|^{2}, \quad h(z)=e^{-\frac{\pi}{2}|z|^{2}}
$$

- The connection form

$$
\Gamma=\partial \log h=-\pi \sum_{j=1}^{n} \bar{z}_{j} d z_{j} ;
$$

- The symplectic form ω is the canonical symplectic form:

$$
\omega=\frac{i}{2 \pi} \bar{\partial} \partial \log h=\frac{i}{2} \sum_{j=1}^{n} d z_{j} \wedge d \bar{z}_{j}=\sum_{j=1}^{n} d x_{j} \wedge d y_{j}
$$

- J_{0} is a complex structure, the standard complex structure on \mathbb{C}^{n}.
- ω is a Kähler form on \mathbb{C}^{n} and $\left(\mathbb{C}^{n}, J_{0}\right)$ is a Kähler manifold.
- $\tau(z)=\pi \operatorname{Tr}\left[\left(-J_{0}^{2}(z)\right)^{1 / 2}\right]=2 \pi n, z \in X$.
- The Kodaira-Laplacian:

$$
\square^{L^{p}}=\bar{\partial}^{L^{p_{*}}} \bar{\partial}^{L^{p}}=-\frac{1}{2} \sum_{j=1}^{n}\left(\frac{\partial}{\partial z_{j}}-\pi p \bar{z}_{j}\right) \frac{\partial}{\partial \bar{z}_{j}} .
$$

- For the renormalized Bochner-Laplacian, we have

$$
\begin{aligned}
& \Delta_{p}=2 \square^{L^{p}} . \\
& \Delta_{p}=-\sum_{j=1}^{n}\left[\left(\nabla_{\partial / \partial x_{j}}^{\llcorner p}+\left(\nabla_{\partial / \partial y_{j}}^{L}\right)^{2}\right]-2 \pi n p\right. \\
&=-\sum_{j=1}^{n}\left[\left(\frac{\partial}{\partial x_{j}}-\pi p \bar{z}_{j}\right)^{2}+\left(\frac{\partial}{\partial y_{j}}-\pi i p \bar{z}_{j}\right)^{2}\right]-2 \pi n p \\
&=-\sum_{j=1}^{n}\left[\frac{\partial^{2}}{\partial x_{j}^{2}}+\frac{\partial^{2}}{\partial y_{j}^{2}}-\pi p \bar{z}_{j} \frac{\partial}{\partial \bar{z}_{j}}\right] .
\end{aligned}
$$

The almost complex structure

- $J_{0}: T X \rightarrow T X$ a skew-adjoint linear endomorphism such that

$$
\omega(u, v)=g\left(J_{0} u, v\right), \quad u, v \in T X ;
$$

- $J: T X \rightarrow T X$ the linear endomorphism given by

$$
J=J_{0}\left(-J_{0}^{2}\right)^{-1 / 2} .
$$

- J is an almost complex structure on $X, J^{2}=-l d_{T X}$, compatible with ω and g :

$$
\omega(J u, J v)=\omega(u, v), \quad g(J u, J v)=g(u, v), \quad u, v \in T X .
$$

- ω is positive: for $u \in T X \backslash 0$

$$
\omega(u, J u)=-g\left(J J_{0} u, u\right)=g\left(\left(-J_{0}^{2}\right)^{1 / 2} u, u\right)>0 .
$$

- If $J_{0}=J$ and J is integrable, then (X, J) is a Kähler manifold.

Spectral gap property

Theorem (Guillemin-Uribe, 1988; Ma-Marinescu, 2002)
There exists $C_{L}>0$ such that for any p

$$
\sigma\left(\Delta_{\rho}\right) \subset\left[-C_{L}, C_{L}\right] \cup\left[2 p \mu_{0}-C_{L},+\infty\right),
$$

where the constant μ_{0} is given by

$$
\mu_{0}=\inf _{u \in T_{x} X, x \in X} \frac{i R_{X}^{L}(u, J(x) u)}{|u|_{g}^{2}} .
$$

Example

$$
\mu_{0}=\inf _{u \in T X} \frac{\left|\left(B^{*} B\right)^{1 / 4} u\right|_{g}^{2}}{|u|_{g}^{2}}=\inf _{x \in X} \inf \left(B^{*} B(x)\right)^{1 / 2} .
$$

Generalized Bergman projection

- \mathcal{H}_{p} the linear subspace of $L^{2}\left(X, L^{p}\right)$ spanned by the eigensections of Δ_{p} corresponding to eigenvalues in $\left[-C_{L}, C_{L}\right]$ (small eigenvalues).
- $P_{\mathcal{H}_{p}}$ the orthogonal projection in $L^{2}\left(X, L^{p}\right)$ onto \mathcal{H}_{p} (generalized Bergman projection).

Example

(X, ω) a compact Kähler manifold, L a holomorphic line bundle:

- $\Delta_{p}=2 \square^{L^{p}}$, where $\square^{L^{p}}$ is the Kodaira Laplacian on L^{p} :

$$
\sigma\left(\Delta_{p}\right) \subset\{0\} \cup\left[2 p \mu_{0}-C_{L},+\infty\right)
$$

- \mathcal{H}_{p} is the space $H^{0}\left(X, L^{p}\right)$ of holomorphic sections of L^{p}.
- $P_{\mathcal{H}_{p}}$ the usual Bergman projection.

Toeplitz operators

A Toeplitz operator is a sequence of bounded linear operators $T_{p}: L^{2}\left(X, L^{p}\right) \rightarrow L^{2}\left(X, L^{p}\right), p \in \mathbb{N}:$

- For any $p \in \mathbb{N}$, we have

$$
T_{p}=P_{\mathcal{H}_{p}} T_{p} P_{\mathcal{H}_{p}}
$$

- There exists a sequence $g_{I} \in C^{\infty}(X)$ such that

$$
T_{p}=P_{\mathcal{H}_{p}}\left(\sum_{l=0}^{\infty} p^{-l} g_{l}\right) P_{\mathcal{H}_{p}}+\mathcal{O}\left(p^{-\infty}\right)
$$

i.e. for any natural k there exists $C_{k}>0$ such that

$$
\left\|T_{p}-P_{\mathcal{H}_{p}}\left(\sum_{l=0}^{k} p^{-l} g_{l}\right) P_{\mathcal{H}_{p}}\right\| \leqslant C_{k} p^{-k-1} .
$$

Toeplitz operators

For any p, the operator T_{p} acts on a finite-dimensional space \mathcal{H}_{p}. The dimension of \mathcal{H}_{p} is given, for p large enough, by the Riemann-Roch-Hirzebruch formula

$$
d_{p}:=\operatorname{dim} \mathcal{H}_{p}=\left\langle\operatorname{ch}\left(L^{p}\right) \operatorname{Td}(T X),[X]\right\rangle .
$$

Here $\operatorname{ch}\left(L^{p}\right)$ is the Chern character of L^{p} and $\operatorname{Td}(T X)$ is the Todd class of the tangent bundle $T X$ considered as a complex vector bundle with complex structure J . In particular,

$$
d_{p} \sim p^{n} \int_{X} \frac{\omega^{n}}{n!}, \quad p \rightarrow \infty
$$

Algebra of Toeplitz operators

Theorem (Yu.K., 2017, loos-Lu-Ma-Marinescu, 2017)
The product $T_{f, p} T_{g, p}$ of the Toeplitz operators

$$
T_{f, p}=P_{\mathcal{H}_{p}} f P_{\mathcal{H}_{p}}, \quad T_{g, p}=P_{\mathcal{H}_{p}} g P_{\mathcal{H}_{p}}, \quad f, g \in C^{\infty}(X)
$$

is a Toeplitz operator. It admits the asymptotic expansion

$$
T_{f, p} T_{g, p}=\sum_{r=0}^{\infty} p^{-r} T_{C_{r}(f, g), p}+\mathcal{O}\left(p^{-\infty}\right)
$$

with some $C_{r}(f, g) \in C^{\infty}(X)$, where C_{r} are bidifferential operators:

$$
C_{0}(f, g)=f g, \quad C_{1}(f, g)-C_{1}(f, g)=i\{f, g\}
$$

where $\{f, g\}$ is the Poisson bracket on $(X, 2 \pi \omega)$.

Wells and localization of eigenfunctions

A self-adjoint Toeplitz operator T_{p} with principal symbol h :

$$
T_{p}=P_{\mathcal{H}_{p}}\left(\sum_{l=0}^{\infty} p^{-l} g_{l}\right) P_{\mathcal{H}_{p}}+\mathcal{O}\left(p^{-\infty}\right), \quad g_{0}=h
$$

An obvious lower bound:

$$
\left(T_{p} v, v\right) \geqslant\left(\inf _{x \in X} h(x)+\mathcal{O}\left(p^{-1}\right)\right)\|v\|, \quad v \in L^{2}\left(X, L^{p}\right)
$$

Indeed, for $T_{h, p}=P_{\mathcal{H}_{p}} h P_{\mathcal{H}_{p}}$ and $v \in \mathcal{H}_{p}$,

$$
\left(T_{h, p} u, u\right)=\int_{X} h(x)|u(x)|^{2} d v_{g}(x) \geqslant \inf _{x \in X} h(x)\|u\|^{2}
$$

Wells and localization of eigenfunctions

Let $h_{0} \in \mathbb{R}$. Suppose λ_{p} is a sequence of eigenvalues of T_{p} such that

$$
\lambda_{p} \leqslant h_{1}<h_{0}, \quad p \in \mathbb{N},
$$

then the corresponding normalized eigensection u_{p} of T_{p} :

$$
T_{h, p} u_{p}=\lambda_{p} u_{p}, P u_{p}=u_{p},\left\|u_{p}\right\|=1
$$

should be localized in the well

$$
U_{h_{0}}=\left\{x \in X: h(x) \leqslant h_{0}\right\} .
$$

Classically forbidden domain

$$
x \backslash U_{h_{0}}=\left\{x \in X: h(x)>h_{0}\right\} .
$$

Tunneling estimates

Assume that there exist $C>0$ and $a>0$ such that for any $p \in \mathbb{N}$ and $(x, y) \in X \times X$,

$$
\left|\left(T_{p}-P_{\mathcal{H}_{p}} h P_{\mathcal{H}_{p}}\right)(x, y)\right|<C p^{-1} e^{-a \sqrt{p} d(x, y)}
$$

Theorem (Y.K., 2018)
Suppose that $u_{p} \in \mathcal{H}_{p},\left\|u_{p}\right\|=1$, is a sequence of eigenfunctions of $T_{p}, T_{p} u_{p}=\lambda_{p} u_{p}$, such that

$$
\lambda_{p} \leqslant h_{1}<h_{0}, \quad p \in \mathbb{N}
$$

There exist $\alpha>0$ and $C_{1}>0$ such that, for any $p \in \mathbb{N}$,

$$
\int_{X} e^{2 \alpha \sqrt{p} d\left(x, U_{h_{0}}\right)}\left|u_{p}(x)\right|^{2} d v_{g}(x)<C_{1}
$$

A self-adjoint Toeplitz operator T_{p} with principal symbol h :

$$
T_{p}=P_{\mathcal{H}_{p}}\left(\sum_{l=0}^{\infty} p^{-l} g_{l}\right) P_{\mathcal{H}_{p}}+\mathcal{O}\left(p^{-\infty}\right), \quad g_{0}=h
$$

Without loss of generality, we will assume that the principal symbol h satisfies the condition:

$$
\min _{x \in X} h(x)=0
$$

The spectrum of T_{p} consists of a finite number of eigenvalues

$$
\lambda_{p}^{0} \leqslant \lambda_{p}^{1} \leqslant \ldots \leqslant \lambda_{p}^{d_{p}-1}
$$

The asymptotic properties of λ_{p}^{m} in the semiclassical limit $p \rightarrow \infty$.

The Bergman projection

Let $x_{0} \in X$ be a non-degenerate minimum of h :
Hess $h\left(x_{0}\right)>0$.
The model operator for Δ_{p} at x_{0} :

$$
\mathcal{L}_{0}=-\sum_{j=1}^{2 n}\left(\frac{\partial}{\partial e_{j}}+\frac{1}{2} R_{x_{0}}^{L}\left(Z, e_{j}\right)\right)^{2}-\tau\left(x_{0}\right)
$$

- $\left\{e_{j}\right\}_{j=1, \ldots, 2 n}$ is an orthonormal base in $T_{X_{0}} X$.
- $\frac{\partial}{\partial U}$ the ordinary differentiation operator on $T_{x_{0}} X$ in the direction $U \in T_{X_{0}} X$.
$\mathcal{P}_{x_{0}}$ the orthogonal projection in $L^{2}\left(T_{x_{0}} X\right)$ to the kernel of \mathcal{L}_{0} (the Bergman projection of \mathcal{L}_{0}).

The Bergman kernel

$\mathcal{J}_{X_{0}}: T_{X_{0}} X \rightarrow T_{X_{0}} X$ is a skew-adjoint operator such that

$$
R^{L}(u, v)=g(\mathcal{J} u, v), \quad u, v \in T X
$$

Actually, $\mathcal{J}=-2 \pi i J_{0}$.
We choose an orthonormal basis $\left\{e_{j}: j=1, \ldots, 2 n\right\}$ of $T_{x_{0}} X$:

$$
\mathcal{J}_{x_{0}} e_{2 k-1}=a_{k} e_{2 k}, \quad \mathcal{J}_{x_{0}} e_{2 k}=-a_{k} e_{2 k-1}, \quad a_{k}>0 \quad k=1, \ldots, n .
$$

We use this basis to define the coordinates Z on $T_{X_{0}} X \cong \mathbb{R}^{2 n}$ as well as the complex coordinates z on $\mathbb{C}^{n} \cong \mathbb{R}^{2 n}, z_{j}=Z_{2 j-1}+i Z_{2 j}, j=1, \ldots, n$. The smooth Schwartz kernel (with respect to $d v_{T X}(Z)$) of $\mathcal{P}_{x_{0}}$:

$$
\mathcal{P}\left(Z, Z^{\prime}\right)=\frac{1}{(2 \pi)^{n}} \prod_{j=1}^{n} a_{j} \exp \left(-\frac{1}{4} \sum_{j} a_{j}\left(\left|z_{j}\right|^{2}+\left|z_{j}^{\prime}\right|^{2}-2 z_{j} \bar{z}_{j}^{\prime}\right)\right) .
$$

The Toeplitz operator $\mathcal{T}_{x_{0}}$ in $L^{2}\left(T_{x_{0}} X\right)$ (the model operator for T_{p} at $\left.x_{0}\right)$:

$$
\mathcal{T}_{x_{0}}=\mathcal{P}_{x_{0}}\left(q_{x_{0}}(Z)+g_{1}\left(x_{0}\right)\right) \mathcal{P}_{x_{0}}
$$

- $q_{x_{0}}(Z)$ the second order term in the Taylor expansion of h at x_{0} (in normal coordinates near x_{0}):

$$
q_{x_{0}}(Z)=\left(\frac{1}{2} H \operatorname{ess} h\left(x_{0}\right) Z, Z\right), \quad Z \in T_{x_{0}} X
$$

ia positive quadratic form on $T_{x_{0}} X \cong \mathbb{R}^{2 n}$.

- g_{1} is the second coefficient in the asymptotic expansion for $\left\{T_{p}\right\}$. It is an unbounded self-adjoint operator in $L^{2}\left(T_{x_{0}} X\right)$ with discrete spectrum. The eigenvalues of $\mathcal{T}_{x_{0}}$ do not depend on the choice of normal coordinates, and the lowest eigenvalue is simple.

Eigenvalue asymptotic expansions

Assume that the principal symbol h satisfies the following conditions:

- $h(x) \geqslant 0$ for any $x \in X$;
- $\min _{x \in X} h(x)=0$;
- Each minimum is non-degenerate.

Then $U_{0}=\{x \in X: h(x)=0\}$ is a finite set (discrete wells):

$$
U_{0}=\left\{x_{1}, \ldots, x_{N}\right\} .
$$

Let \mathcal{T} be the self-adjoint operator on $L^{2}\left(T_{X_{1}} X\right) \oplus \ldots \oplus L^{2}\left(T_{X_{N}} X\right)$

$$
\mathcal{T}=\mathcal{T}_{x_{1}} \oplus \ldots \oplus \mathcal{T}_{x_{N}} .
$$

Theorem (Y.K. (2018), A. Deleporte (2017, for Kähler manifolds))
Let $\left\{\lambda_{p}^{m}\right\}$ be the increasing sequence of the eigenvalues of T_{p} on \mathcal{H}_{p} (counted with multiplicities) and $\left\{\mu_{m}\right\}$ the increasing sequence of the eigenvalues of \mathcal{T} (counted with multiplicities). Then, for any fixed m, λ_{p}^{m} has an asymptotic expansion, when $p \rightarrow \infty$, of the form

$$
\lambda_{p}^{m}=p^{-1} \mu_{m}+p^{-3 / 2} \phi_{m}+\mathcal{O}\left(p^{-2}\right)
$$

Theorem (Y.K. (2018), A. Deleporte (2017, for Kähler manifolds)) If μ is a simple eigenvalue of $\mathcal{T}_{x_{j}}$ for some j, then there exists a sequence λ_{p} of eigenvalues of T_{p} on \mathcal{H}_{p} which has a complete asymptotic expansion of the form

$$
\lambda_{p}^{0} \sim p^{-1} \sum_{k=0}^{+\infty} a_{k} p^{-k}, \quad a_{0}=\mu
$$

Toeplitz operator $\mathcal{T}(Q)$ in $L^{2}\left(\mathbb{C}^{n}\right)$

$$
\mathcal{T}(Q)=\mathcal{P} Q: \operatorname{ker} \mathcal{L}_{0} \subset L^{2}\left(\mathbb{C}^{n}\right) \rightarrow \operatorname{ker} \mathcal{L}_{0} \subset L^{2}\left(\mathbb{C}^{n}\right)
$$

where $Q=Q(z, \bar{z})$ is a polynomial in \mathbb{C}^{n} and \mathcal{P} is the orthogonal projection in $L^{2}\left(\mathbb{C}^{n}\right)$ to the kernel of \mathcal{L}_{0}.

Fock space \mathcal{F}_{n} is the space of holomorphic functions F in \mathbb{C}^{n} such that $e^{-\frac{1}{2}|z|^{2}} F \in L^{2}\left(\mathbb{C}^{n}\right)$.
\mathcal{F}_{n} is a closed subspace in $L^{2}\left(\mathbb{C}^{n} ; e^{-\frac{1}{2}|z|^{2}} d z\right)$.
The orthogonal projection $\Pi: L^{2}\left(\mathbb{C}^{n} ; e^{-\frac{1}{2}|z|^{2}} d z\right) \rightarrow \mathcal{F}_{n}$:

$$
\Pi F(z)=\frac{1}{\pi^{n}} \int_{\mathbb{C}^{n}} \exp \left(-\left|z^{\prime}\right|^{2}+z \cdot \bar{z}^{\prime}\right) F\left(z^{\prime}\right) d z^{\prime} d \bar{z}^{\prime}
$$

Consider the isometry $S: L^{2}\left(\mathbb{C}^{n} ; e^{-\frac{1}{2}|z|^{2}} d z\right) \rightarrow L^{2}\left(\mathbb{C}^{n}\right)$ given, for $u \in L^{2}\left(\mathbb{C}^{n} ; e^{-\frac{1}{2}|z|^{2}} d z\right)$, by

$$
S u(z)=\frac{\prod_{j=1}^{n} a_{j}}{2^{n}} e^{-\frac{1}{4} \sum_{j} a_{j}\left|z_{j}\right|^{2}} u(\phi(z))
$$

where $\phi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a linear isomorphism given by

$$
\phi(z)=\left(\frac{\sqrt{a_{1}}}{\sqrt{2}} z_{1}, \ldots, \frac{\sqrt{a_{n}}}{\sqrt{2}} z_{n}\right), \quad z \in \mathbb{C}^{n}
$$

It is easy to see that $S \Pi S^{-1}=\mathcal{P}$. It follows that $S\left(\mathcal{F}_{n}\right)=\operatorname{ker} \mathcal{L}_{0}$ and

$$
\mathcal{T}(Q)=S \mathcal{T}^{0}\left(Q \circ \phi^{-1}\right) S^{-1}
$$

where $\mathcal{T}^{0}(Q)$ is a Toeplitz operator in the Fock space defined by

$$
\mathcal{T}^{0}(Q)=\Pi Q: \mathcal{F}_{n} \rightarrow \mathcal{F}_{n}
$$

Bargmann transform

The Bargmann transform is an isometry $B: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{F}_{n}$ defined by

$$
B f(z)=\pi^{-n / 4} \int_{\mathbb{R}^{n}} \exp \left[-\left(\frac{1}{2} z \cdot z+\frac{1}{2} x \cdot x-\sqrt{2} z \cdot x\right)\right] f(x) d x, \quad z \in \mathbb{C}^{n}
$$

For the position and momentum operators in the Schrödinger presentation $\hat{q}_{k}=x_{k}, \quad \hat{p}_{k}=\frac{1}{i} \frac{\partial}{\partial x_{k}}$, the corresponding operators in the Bargmann-Fock presentation

$$
B \hat{q}_{k} B^{-1}=\frac{1}{\sqrt{2}}\left(z_{k}+\frac{\partial}{\partial z_{k}}\right), \quad B \hat{p}_{k} B^{-1}=\frac{1}{\sqrt{2}} i\left(z_{k}-\frac{\partial}{\partial z_{k}}\right) .
$$

For the creation and annihilation operators $\hat{a}_{k}=\frac{1}{\sqrt{2}}\left(\hat{q}_{k}+i \hat{p}_{k}\right)$, $\hat{a}_{k}^{*}=\frac{1}{\sqrt{2}}\left(\hat{q}_{k}-i \hat{p}_{k}\right)$, the corresponding operators in the Bargmann-Fock presentation

$$
B \hat{a}_{k} B^{-1}=\frac{\partial}{\partial z_{k}}, \quad B \hat{a}_{k}^{*} B^{-1}=z_{k} .
$$

- For any $F \in L^{2}\left(\mathbb{C}^{n} ; e^{-\frac{1}{2}|z|^{2}} d z\right), \frac{\partial}{\partial z_{k}} \Pi F=\Pi \bar{z}_{k} F$;
- For any $F \in \mathcal{F}_{n}, z_{k} \Pi F=\Pi\left(z_{k} F\right)$.

Let P be a polynomial in \mathbb{C}^{n}. If we write P as

$$
P(\bar{z}, z)=\sum_{k, l} A_{k ; l} \bar{z}_{1}^{k_{1}} \ldots \bar{z}_{n}^{k_{n}} z_{1}^{l_{1}} \ldots z_{n}^{l_{n}}
$$

then, for any $F \in \mathcal{F}_{n}$,

$$
\mathcal{T}^{0}(P) F=\Pi(P(\bar{z}, z) F)=P\left(\partial_{z}, z\right) F
$$

where $P\left(\partial_{z}, z\right)$ is the operator in \mathcal{F}_{n} given by

$$
P\left(\partial_{z}, z\right)=\sum_{k, l} A_{k ; l} \frac{\partial^{k_{1}}}{\partial z_{1}^{k_{1}}} \ldots \frac{\partial^{k_{n}}}{\partial z_{n}^{k_{n}}} z_{1}^{l_{1}} \ldots z_{n}^{l_{n}}
$$

Anti-Wick symbols (Berezin, 1971)

- Under the Bargmann transform B, the operator $\mathcal{T}^{0}(P)$ in \mathcal{F}_{n} corresponds to the operator $B^{-1} \mathcal{T}^{0}(P) B$ in $L^{2}\left(\mathbb{R}^{n}\right)$ given by

$$
B^{-1} \mathcal{T}^{0}(P) B=\sum A_{k ; 1} \hat{a}^{k_{1}} \ldots \hat{a}^{k_{n}}\left(\hat{a}_{1}^{*}\right)^{I_{1}} \ldots\left(\hat{a}_{n}^{*}\right)^{I_{n}}
$$

- The operator $B^{-1} \mathcal{T}^{0}(P) B$ is the differential operator with polynomial coefficients in \mathbb{R}^{n};
- $P(\bar{z}, z)$ is the anti-Wick symbol of $B^{-1} \mathcal{T}^{0}(P) B$ (the Schrödinger presentation) and $\mathcal{T}^{0}(P)$ (the Bargmann-Fock presentation);
- Some sufficient conditions of self-adjointness of the operator $B^{-1} P\left(\partial_{z}, z\right) B$ (Berezin, 1971).

One can compute the Weyl symbol of this operator by the well-known formula (Berezin, 1971). If P is a positive definite quadratic form, then

$$
B^{-1} \mathcal{T}^{0}(P) B=O p_{w}(\tilde{P})+\frac{\operatorname{tr}(\tilde{P})}{2}
$$

where \tilde{P} is a quadratic form on $\mathbb{R}^{2 n}$, corresponding to P under the linear isomorphism $(x, \xi) \in \mathbb{R}^{2 n} \cong T^{*} \mathbb{R}^{n} \mapsto z \in \mathbb{C}^{n}$:

$$
z_{k}=\frac{1}{\sqrt{2}}\left(x_{k}-i \xi_{k}\right), \quad k=1, \ldots, n
$$

$O p_{w}(\tilde{P})$ is the pseudodifferential operator in \mathbb{R}^{n} with Weyl symbol \tilde{P}.

The Bochner-Laplacian $\Delta^{L^{p}}$:

$$
\Delta^{L^{p}}=\left(\nabla^{L^{p}}\right)^{*} \nabla^{L^{p}}: C^{\infty}\left(X, L^{p}\right) \rightarrow C^{\infty}\left(X, L^{p}\right)
$$

τ is a smooth function on X :

$$
\tau(x)=\pi \operatorname{Tr}\left[\left(-J_{0}^{2}(x)\right)^{1 / 2}\right], \quad x \in X
$$

For the magnetic Laplacian $\Delta^{L}=-\sum_{j=1}^{d}\left(\frac{\partial}{\partial z_{j}}-i A_{j}(z)\right)^{2}$

$$
\tau(x)=\frac{1}{2} \operatorname{Tr}\left(B^{*} B\right)^{1 / 2}=\operatorname{Tr}^{+}(B)
$$

Assumptions

- $\min _{x \in X} \tau(x)=\tau_{0}$;
- There exists a unique $x_{0} \in X$ such that $\tau(x)=\tau_{0}$, which is non-degenerate:

Hess $\tau\left(x_{0}\right)>0$.

Schrödinger operator type representation

$$
\Delta^{L^{p}}=\left(\nabla^{L^{p}}\right)^{*} \nabla^{L^{p}}=\Delta_{p}+p \tau,
$$

the renormalized Bochner-Laplacian Δ_{p} satisfies the gap property:

$$
\sigma\left(\Delta_{p}\right) \subset\left[-C_{L}, C_{L}\right] \cup\left[2 p \mu_{0}-C_{L},+\infty\right)
$$

\mathcal{H}_{p} corresponds to the lowest Landau levels.
Upper estimates for $\lambda_{j}\left(\Delta^{L^{p}}\right)$ (the Rayleigh-Ritz technique):

$$
\lambda_{j}\left(\Delta^{L^{p}}\right) \leqslant \lambda_{j}\left(P_{\mathcal{H}_{p}} \Delta^{L^{p}} P_{\mathcal{H}_{p}}\right), \quad j \in \mathbb{N} .
$$

The operator

$$
p^{-1} P_{\mathcal{H}_{p}} \Delta^{L^{p}} P_{\mathcal{H}_{p}}=p^{-1} P_{\mathcal{H}_{p}} \Delta_{p} P_{\mathcal{H}_{p}}+P_{\mathcal{H}_{p}} \tau P_{\mathcal{H}_{p}}
$$

is a Toeplitz operator:

$$
p^{-1} P_{\mathcal{H}_{p}} \Delta^{L^{p}} P_{\mathcal{H}_{p}}=P_{\mathcal{H}_{p}}\left(\sum_{l=0}^{\infty} p^{-l} g_{l}\right) P_{\mathcal{H}_{p}}+\mathcal{O}\left(p^{-\infty}\right)
$$

The leading term

$$
g_{0}(x)=\tau(x)
$$

The next term is the principal symbol of $\Delta_{p} P_{\mathcal{H}_{p}}$:

$$
g_{1}(x)=J_{1,2}(x)
$$

Computation of $\mathrm{J}_{1,2}$

Put

$$
\frac{\partial}{\partial z_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial Z_{2 j-1}}-i \frac{\partial}{\partial Z_{2 j}}\right), \quad \frac{\partial}{\partial \bar{z}_{j}}=\frac{1}{2}\left(\frac{\partial}{\partial Z_{2 j-1}}+i \frac{\partial}{\partial Z_{2 j}}\right) .
$$

Let $\mathcal{R}(Z)=\sum_{j=1}^{2 n} Z_{j} e_{j}=Z$ denote the radial vector field on $T_{x_{0}} X$.
Define first order differential operators $b_{j}, b_{j}^{+}, j=1, \ldots, n$, on $T_{x_{0}} X$ by

$$
b_{j}=-2 \nabla_{\frac{\partial}{\partial z_{j}}}-R_{x_{0}}^{L}\left(\mathcal{R}, \frac{\partial}{\partial z_{j}}\right) \quad b_{j}^{+}=2 \nabla_{\frac{\partial}{\partial \bar{z}_{j}}}+R_{x_{0}}^{L}\left(\mathcal{R}, \frac{\partial}{\partial \bar{z}_{j}}\right) .
$$

So we can write

$$
\mathcal{L}_{x_{0}}=-\sum_{j=1}^{2 n}\left(\frac{\partial}{\partial e_{j}}+\frac{1}{2} R_{x_{0}}^{L}\left(Z, e_{j}\right)\right)^{2}-\tau\left(x_{0}\right)=\sum_{j=1}^{n} b_{j} b_{j}^{+} .
$$

$$
J_{1,2}\left(x_{0}\right)=\frac{F_{1,2, x_{0}}(0,0)}{\mathcal{P}_{x_{0}}(0,0)}, \quad F_{1,2, x_{0}}\left(Z, Z^{\prime}\right)=\left[\mathcal{P}_{x_{0}} \mathcal{F}_{1,2, x_{0}} \mathcal{P}_{x_{0}}\right]\left(Z, Z^{\prime}\right),
$$

where $\mathcal{F}_{1,2, x_{0}}$ is an unbounded linear operator in $L^{2}\left(T_{x_{0}} X\right)$ given by

$$
\begin{aligned}
& \mathcal{F}_{1,2, x_{0}}=4\left\langle R_{x_{0}}^{T X}\left(\frac{\partial}{\partial z_{i}}, \frac{\partial}{\partial z_{j}}\right) \frac{\partial}{\partial \bar{z}_{i}}, \frac{\partial}{\partial \bar{z}_{j}}\right\rangle \\
& \quad+\left\langle\left(\nabla^{X} \nabla^{x} \mathcal{J}\right)_{(\mathcal{R}, \mathcal{R})} \frac{\partial}{\partial z_{i}}, \frac{\partial}{\partial \bar{z}_{i}}\right\rangle+\frac{\sqrt{-1}}{4} \operatorname{tr}_{\mid T X}\left(\nabla^{x} \nabla^{X}(J \mathcal{J})\right)_{(\mathcal{R}, \mathcal{R})} \\
& \quad+\frac{1}{9}\left|\left(\nabla_{\mathcal{R}}^{X} \mathcal{J}\right) \mathcal{R}\right|^{2}+\frac{4}{9}\left\langle\left(\nabla_{\mathcal{R}}^{X} \mathcal{J}\right) \mathcal{R}, \frac{\partial}{\partial z_{i}}\right\rangle b_{i}^{+} \mathcal{L}_{0}^{-1} b_{i}\left\langle\left(\nabla_{\mathcal{R}}^{X} \mathcal{J}\right) \mathcal{R}, \frac{\partial}{\partial \bar{z}_{i}}\right\rangle .
\end{aligned}
$$

If $J_{0}=J$ (almost-Kähler), then

$$
J_{1,2}\left(x_{0}\right)=\frac{1}{24}\left|\nabla^{x}\right|_{x_{0}}^{2} .
$$

Here if $\left\{e_{j}\right\}$ is a local orthonormal frame of ($T X, g^{T X}$), then

$$
\left|\nabla^{X} J\right|^{2}=\sum_{i j}\left|\left(\nabla_{e_{i}}^{X} J\right) e_{j}\right|^{2}
$$

Upper bounds for eigenvalues

Consider the Toeplitz operator $\mathcal{T}_{x_{0}}$ in $L^{2}\left(T_{x_{0}} X\right)$ defined by

$$
\mathcal{T}_{x_{0}}=\mathcal{P}_{x_{0}}\left(q_{x_{0}}(Z)+J_{1,2}\left(x_{0}\right)\right) \mathcal{P}_{x_{0}} .
$$

where

$$
q_{x_{0}}(Z)=\left(\frac{1}{2} \operatorname{Hess} \tau\left(x_{0}\right) Z, Z\right), \quad Z \in T_{x_{0}} X
$$

Let $\left\{\lambda_{j}\left(\Delta^{L^{p}}\right)\right\}$ be the increasing sequence of the eigenvalues of the operator $\Delta^{L^{\rho}}$ (counted with multiplicities) and $\left\{\mu_{j}\right\}$ be the increasing sequence of the eigenvalues of $\mathcal{T}_{x_{0}}$ (counted with multiplicities).

Theorem (Yu. K. (2018))
For any $j \in \mathbb{N}$, there exists $\phi_{j} \in \mathbb{R}$ such that

$$
\lambda_{j}\left(\Delta^{L p}\right) \leqslant p \tau_{0}+\mu_{j}+p^{-1 / 2} \phi_{j}+\mathcal{O}\left(p^{-1}\right), \quad p \rightarrow \infty
$$

2D-magnetic Laplacian

In particular, for the 2D-magnetic Laplacian on a Riemann surface X :

$$
\mathbf{B}=b(x) d v_{g}, \quad d v_{g}=\sqrt{g} d x_{1} \wedge d x_{2},
$$

assume $b(x)>0$ for any $x \in X$ and there exists a unique x_{0} such that

$$
b\left(x_{0}\right)=b_{0}:=\min _{x \in X} b(x),
$$

if we denote

$$
a=\operatorname{Tr}\left(\frac{1}{2} \operatorname{Hess} b\left(x_{0}\right)\right)^{1 / 2}, \quad d=\operatorname{det}\left(\frac{1}{2} \operatorname{Hess} b\left(x_{0}\right)\right) .
$$

we have (Helffer-Y.K., 2010, Helffer-Morame, 2001):

$$
\lambda_{j}\left(\Delta^{L^{p}}\right) \leqslant p b_{0}+\left[\frac{2 d^{1 / 2}}{b_{0}} j+\frac{a^{2}}{2 b_{0}}\right]+C_{j} p^{-1 / 2}, \quad j \in \mathbb{N} .
$$

