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Virtual Knot Theory
studies stabilized knots in thickened surfaces.
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Figure 4: Surfaces and Virtuals







g = 01+U2+03-11+02+3-

Virtual knots are
all oriented
(signed) Gauss
codes taken up to
Reidemeister
moves on the
codes.

Virtual crossings
are artifacts of
the planar
diagram.

g=01+U2+03—-Ul+02+U3—.




Generalized Reidemeister Moves for

Virtual Knots and Links
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Figure 2: Flat Virtual Moves




Figure 3: Detour Move

e ) e X

Figure 4: Forbidden Moves
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The bracket polynomial [18] model for the Jones polynomial [14, 15, 16, 42] is usually described by the expan-
sion

(X)=40X)+470) () (1)
and we have
(KQ) = (-A* = AT*)(K) )
() = (=A%) ©
(C)= (=47 () 4

We call a diagram in the plane purely virtual if the only crossings in the diagram are virtual crossings. Each
purely virtual diagram is equivalent by the virtual moves to a disjoint collection of circles in the plane.




K is non-trivial,
non-classical and
chiral.




There exist infinitely many non-trivial K
with unit Jones polynomial.

Bracket Polynomial is Unchanged
when smoothing flanking virtuals.

Z-Equivalence
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Bracket Polynomial is Unchanged
when smoothing flanking virtuals.







Virtualization does not change the IQ(K).
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Figure 8. 1Q(Virt)

The composition ab can denote a group theoretic operation
For example, let ab = b.a”*(-1).b where a.b is group
multiplication. The resulting group presentation is, for
classical knots, the fundamental group of the two-fold
branched covering along the knot.




m <Virt(K)> = <Switch(K)>
Q and

< 1Q(Virt(K)) = IQ(K).

Conclusion: There exist infinitely many
non-trivial Virt(K) with unit Jones
polynomial.




Virtual Knot Cobordism
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Figure 16: Saddles, Births and Deaths
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VS
saddle Virtual Stevedore
Slice Schema gives
death genus 0 surface bounding VS.

Figure 17: Virtual Stevedore is Slice
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Virtual Stevedore
in Ribbon Form
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Virtual Stevedore is not classical.
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Vertical Mirror Image

K#K!




saddle Connected Sum
with the
Vertical Mirror Image
IS
Slice.

isotopy

trivial virtual
link




We say that K is concordant to K’
K=K
if there exists a cobordism from K to K' of genus 0.

A virtual knot is said to be slice
if it is concordant to the unknot.




Spanning Surfaces for Knots and Virtual Knots.
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Seifert Circles

Seifert Surface
F(T)

Figure 18: Classical Seifert Surface




Every classical knot diagram bounds a surface in the four-ball
whose genus is equal to the genus of its Seifert Surface.

Figure 19: Classical Cobordism Surface
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Seifert Circle(s) for K

Every virtual diagram K bounds a virtual orientable surface of
genus g = (1/2)(-r + n +1) where r is the number of Seifert circles,
and n is the number of classical crossings in K.

This virtual surface is the cobordism Seifert surface when K

is classical.

Figure 20: Virtual Cobordism Seifert Surface
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Heather Dye, Aaron Kaestner and LK, prove the
following generalization of Rasmussen’s Theorem,
giving the four-ball genus of a positive virtual knot.

Theorem [2]. Let K be a positive virtual knot (all classcial crossings in K are positive), then the
four-ball genus g4(K') is given by the formula

9a(K) = (1/2)(=r +n+1) = g(5(K))

where 7 is the number of virtual Seifert circles in the diagram K and n is the number of classcial
crossings in this diagram. In other words, that virtual Seifert surface for K represents its minimal
four-ball genus.

The virtual Seifert surface for positive virtual K
represents the minimal four-ball genus of K.

The Theorem is proved by generalizing both Khovanov
and Lee homology to virtual knots and generalizing
the Rasmussen invariant to virtual knots.




Classical Spanning Surfaces simplify by passing bands.
Every classical knot is pass equivalent to either a trefoil
or an unknot. Trefoil and unknot are distinguished by the
Arf invariant.




Virtual Band Passing
VKT +
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Classically there are two
pass classes for knots: Trefoil
and Unknot.

What are the pass classes for
virtual knots and links?




The Kishino
diagram gives a
virtual knot
that is slice but it

IS not
PASS trivial.

Kishino is not pass
trivial
since it is a non-trivial
flat virtual knot. And its
flat class IS its pass class
since passing does not
affect it as a flat.




Manturov Parity Bracket
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The Parity Bracket provides the simplest proof that
the Kishino diagram is non-trivial.

Parity bracket is calculated for virtuals and flat virtuals by replacing
all odd crossings (odd interstice in Gauss code) with nodes.Then
apply state sum with graphs (up to type two reducion) and
polynomial coefficients. Kishino invariant is a single reduced
diagram.
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In flat Gauss code, two-moves require oppositely
oriented parallel or crossed chords.




Reducing two-
moves
are not available
on the flat
Kishino diagram.
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All odd crossings
and irreducible
as flat virtual diagram.

<abacdcebefdf> Here is another
example of a flat with
all odd crossings.
It is non trivial by

parity bracket and it
is its own pass class.
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This Gauss code
schema shows how
to produce infinitely

many distinct flat

virtuals, each their
own pass class. Thus
there are infinitely
many distinct pass
classes for virtual
knots.




Affine Index Polynomial

(See LK and Folwazcny and variants from
Henrich,Cheng,Dye,...)

W_ W+ sgn(A) =sgn(B) = +1

Al 2 2 sgn(C) =-1

_i2,:2.
P () =t=+1°-2




K#K!

_¢1 IS
Pegg =t +t -t -t =0

A slice knot with non-zero but cancelling weights.
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Pg = Z sgn(c) (V%@ — 1) = Z sgn(c)tVE©) — wr(K)

C C

Py = iwrn(K)(tn —1)

wrp(K) = Z sgn(c).

c:Wgk(c)=n




Remark. We define the flat affine index polynomial, PFx, for a flat virtual knot K
(in a flat virtual link the classical crossings are immersion crossings, neither over not
under, Reidemeister moves are allowed independent of over and under, but virtual
crossings still take detour precedence over classical crossings [14]) by the formula

PF(t) =) (t"Wxl 4 1)
C
where the polynomial is taken over the integers modulo two, but the exponents (the
absolute values of the weights at the crossings) are integral. It is not hard to see
that PFk(t) is an invariant of flat virtual knots, and that the concordance results
of the present paper hold in the flat category for this invariant. These results will
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=0 (mod 2)

PF(K))

PF(K) =t"2 + 1 (mod 2)
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impossible to label

can be labeled




Index Invariant for Links

A
p+1 q-1
9 p
p+1 q-1
5 H = Hopf Link
N =p-q -

W(A) = q-p-1 = -N-1
W(B) = p-q +1 = N+1

-N-1 " N+1_

PH ) =t - 2




W+ w-
A N-1 1-N
B -N N

Virtual Link L.
pL=tN-1. N

+t -3




Virtual Borromean Rings




Concordances are Composed of Elementary

Concordances
(Cancellation of Saddle and Max or Min)

¥E)

K’




Theorem. P_K is a concordance invariant.

Proof. Concordances are compositions of
elementary concordances.//
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Theorem. P_K is a concordance invariant.

Proof. Concordances are compositions of
elementary concordances.//

A special concordance of links is DEFINED to be
a composition of elementary concordances.

P_K is an invariant of special concordance for links
that have an affine labeling.




A labeled

cobordism
of a knot

to a link.
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PK =t2+ ¢t - tI-]
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K bounds a virtual surface of genus one.

Hence, via P_K, K has genus one.




Thank you for your attention!




