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Dirac Fermions and Second Quantization

{ci , c†i } = δij c2
i = (c†i )2 = 0 N = c†c N2 = N (1)

where c†,c and N are creation,annihilation and number operator for a fermion.

| 1〉 = c† | 0〉 | 0〉 = c | 1〉 (2)

c | 0〉 = c† | 1〉 = 0 (3)

Fermions have a vacuum state. Creation and annihilation operator are used to
construct the states of fermions. Fermions have U(1) symmetry, and hence
number of fermions is conserved, and occupation number is a well-defined
quantum number. Number of fermions in a state is given by the eigenvalue of
number operator. Number operator is idempotent, and hence there are only two
eigenvalues:0, 1. Also, different fermion operators anti-commute with each other
and hence obey Fermi-Dirac statistics.
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Algebra of Majorana Fermions

c =
γ1 + iγ2√

2
c† =

γ1 − iγ2√
2

(4)

Majorana Fermions obey Clifford Algebra {γµ, γν} = 2δµν

γ1 =
c + c†√

2
γ2 =

i(c† − c)√
2

(5)

Majorana Fermions are their own anti-particles:γ = γ†.
Majorana Fermions do not satisfy Pauli Exclusion Principle.
There is no well-defined number operator for Majorana Fermions.
Majorana Fermions have Z2 symmery and parity is the only good quantum
number they have.
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Transverse Field Ising Model

H = −J
N−1∑
i=1

σx
i σ

x
i+1 − hz

N∑
i=1

σz
i (6)

This model has Z2 symmetry due to which the global symmetry operator
commutes with Hamiltonian. [∏

i

σz
i ,H

]
= 0 (7)

Jordan-wigner Transformation maps spin operators into fermion operators.

ci = σ†i (
i−1∏
j=1

σz
i ) c†i = σ−i ((

i−1∏
j=1

σz
i ) (8)

H = −J
N−1∑
i=0

(c†i ci+1 + h.c .)− J
N−1∑
i=0

c†i c
†
i+1 + h.c .− 2h

N∑
i=0

c†i ci
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Kitaev Chain and Majorana Edge Modes

Kitaev introduced p-wave chain model:

H = −t
N−1∑
i=0

(c†i ci+1 + h.c .) +4
N−1∑
i=0

c†i c
†
i+1 + h.c .− µ

N∑
i=0

c†i ci

Using Majorana representation of fermions:

ci =
γ1,i − iγ2,i√

2
c†i =

γ1,i + iγ2,i√
2

(9)

H = it
N−1∑
i=0

(γ1,iγ2,i+1 − γ2,iγ1,i+1) + i∆
N−1∑
i=0

(γ1,iγ2,i+1 + γ2,iγ1,i+1) (10)

− µ
N∑
i=0

(
1

2
− iγ1,iγ2,i ) (11)

Due to the superconducting term,there is no number conservation,only parity is
conserved.

P = iγ1γ2 = 1− 2c†c (12)
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Majorana Edge Modes in Kitaev Chain

Ref:Jason Alicea Rep. Prog. Phys.75 (2012)
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Topological Phase of Kitaev Chain

Choosing µ = 0 and t = ∆ the Hamiltonian becomes.

H = 2it
N−1∑
i=0

γ1,iγ2,i+1 (13)

We can define a complex fermion:

ai =
γ2,i+1 − iγ1,i√

2
(14)

The Hamiltonian becomes:

H =

(
t
N−1∑
i=0

a†i ai −
1

2

)
(15)

a0 =
γ1,N − iγ2,0√

2
Hb = ε0a

†
0a0 ε0 = 0 (16)

The Hamiltonian has double degeneracy which is protected by parity symmetry
and hence this is topological degeneracy.
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Topological Order and Majorana fermions

Majorana fermions(actually Majorana Zero Modes) have attracted lot of
attention in condensed matter physics community.

Majorana fermions are the promising candidates for topological quantum
computing because of their non-abelian anyonic statistics.

Majorana fermions occur in quantum Hall fluids, topological superconductors,
quantum spin liquids, Multi-channel Kondo models.

Existence of Majorana fermions is signature of topological order.

Kitaev chain model can be obtained from Transverse field Ising model(TFIM).

Why there is topological order in Kitaev chain and not in TFIM?

Some attempts to answer this question: Greiter et al,Cobanerra et al

However they have just explored the duality between the models and not
explained the emergence of topological order in Kitaev chain.

Ref: Annals of Physics, 351,1026(2014), Phys. Rev. B.87, 0411705(2013)

Rukhsan ul haq (Postdoctoral Fellow, Department of Physics, Zhejiang University Hangzhou, China.)Topological Protection of Majorana fermion Qubits September 16, 2018 10 / 23



Algebra of Majorana Doubling

Kitaev found Majorana edge modes in his model.

Each state in Kitaev chain spectrum has degenerate partner due to parity
symmetry like as time reversal symmetry leads to Kramers pairs.

Lee and Wilzeck(PRL 111(2013)) showed that in Kitaev chain there are more
symmetries which lead to doubled spectrum.

{1, γ1 = a1, γ2 = a2, γ3 = a3, γ12 = a1a2, γ23 = a2a3, γ31 = a3a1, γ123 = a1a2a3}

Hamiltonian for three Majorana fermions:

Hm = −i(αb1b2 + βb2b3 + γb3b1)

Naively one would take it for spin Hamiltonian but there are subtle differences:

Γ ≡ −ib1b2b3

Γ2 = 1 [Γ, bj ] = 0 [Γ,Hm] = 0 {Γ,P} = 0

{Γ,P} = 0 leads to the even-odd pair for each energy value.
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Topological Order and Majorana Mode Operators

Fermionic zero modes are one of the very important signatures of
topological order.

Fermionic mode operators give a neat way to find topological order in
a given Hamiltonian.

A fermionic zero mode is an operator Γ such that

Commutes with Hamiltonian:[H, Γ] = 0

anticommutes with parity:{P, Γ} = 0

has finite ”normalization” even in the L→∞ limit:Γ†Γ = 1.

We find that the same Majorana mode operator which leads to the spectrum
doubling also leads to the topological order in Kitaev chain model.
Majorana mode operator is not present for the spin Hamiltonian and hence there
is no topological order over there.
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Topological protection and quantum operator algebra

Topological degeneracy and topological protection can be understood in a more
general way based on the operator algebra of symmetry generators.

[P,H] = [Q,H] = 0 {P,Q} = 0 P2 = Q2 = 0 (17)

P and Q are symmetry operators of the Hamiltonian H which anti-commute with
each other.
Because P and Q commute with H, so they will have same eigenstates but
because P and Q anti-commute, so the eigenvalues can not be same.

P | Ψ〉 = m | Ψ〉 Q(P | Ψ〉) = mQ(| Ψ〉) P(Q | Ψ〉) = −m(Q | Ψ〉) (18)

For every state with eigenvalue m, there is another state with eigenvalue -m:
Doubling of the spectrum.
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Topological protection for Majorana fermion chains

We consider a system which has 2N + 1 Majorana fermions. These Majorana
fermions will span a vector space of dimensionality 22N+1 corresponding to the
number of linearly independent generators of Clifford algebra. These generators
can be written as

1, γ1, γ2..., γ2N+1,

γ1γ2, γ1γ3.... (19)

γ1γ2γ3.... (20)

... · · · γ1γ2.....γ2N+1 (21)

The most general local quadratic Hamiltonian for the Majorana fermions can be
written as

H = i
∑
ij

hijγiγj (22)

Due to the anti-commuting nature of the Majorana fermions,hij = −hji . This
Hamiltonian has manifest Z2 symmetry and consequently the Hamiltonian can be
diagonalized in the parity eigenbasis.
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Topological Degenercay (continued)

Now we the generalized τ operator which commutes with Hamiltonian.

τ = i
2N+1
N γ1γ2...γ2N+1 (23)

This operator is not only the symmetry operator of the Hamiltonian but it also
squares to unity and anti-commutes with parity and hence is emergent Majorana
mode operator.
Now we can see that this odd Majorana fermion chain has the algebraic structure
needed for topological degeneracy: P is the parity operator and τ is Q operator.

[P,H] = [τ,H] = 0 {P, τ} = 0 P2 = τ 2 = 1 (24)

So, we show that chain of odd number of Majorana fermions will have topological
degeneracy.
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Topological Degeneracy and Braid Group

Braid group generators satisfy:

TiTj = TjTi | i − j |> 1

TiTjTi = TjTiTj | i − j |= 1 (25)

Ivanov showed that Majorana fermions give representation of braid group.

τi = exp(
π

4
γi+1γi ) =

1√
2

(1 + γi+1γi ) (26)

Braiding of Majorana fermions happens only in topological phase.

H = 2it
N−1∑
i=0

γ1,iγ2,i+1 (27)

Ref:Ivanov,PRL, 86 (2001) Kauffman-Lomanaco, NJP 4(2002)
Kauffman-Lomanaco,arxiv:1603.07827
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Ivanov Represenation

Braiding operators arise from a row of Majorana Fermions {γ1, · · · γn} as follows:
Let

σi = (1/
√

2)(1 + γi+1γi ).

Note that if we define
λk = γi+1γi

for i = 1, · · · n with γn+1 = γ1, then

λ2
i = −1

and
λiλj + λjλi = 0

where i 6= j . From this it is easy to see that

σiσi+1σi = σi+1σiσi+1

for all i and that σiσj = σjσi when |i − j | > 2. Thus we have constructed a
representation of the Artin braid group from a row of Majorana fermions. This
construction is due to Ivanov and he notes that

σi = e(π/4)γi+1γi .
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Type II Braid Group Representation

MiMi±1 = −Mi±1Mi , M2 = −I , (28)

MiMj = MjMi,

∣∣i − j
∣∣ ≥ 2. (29)

The operators Mi take the place here of the products of Majorana Fermions
γi+1γi in the Ivanov picture of braid group representation in the form

σi = (1/
√

2)(1 + γi+1γi ).

This goes beyond the work of Ivanov, who examines the representation on
Majoranas obtained by conjugating by these operators. The Ivanov representation
is of order two, while this representation is of order eight. The Bell-Basis Matrix
BII is given as follows:

BII =
1√
2


1 0 0 1
0 1 1 0
0 −1 1 0
−1 0 0 1

 =
1√
2

(
I + M

) (
M2 = −1

)
(30)
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Majorana Fermions and TLA

We define A and B as A = γiγi+1, B = γi−1γi where A2 = B2 = −1.

U = (1 + iA) V = (1 + iB), (31)

U2 = 2U V 2 = 2V , (32)

UVU = V VUV = U, (33)

Thus a Majorana fermion representation of TLA is given by:

Uk =
1√
2

(1 + iγk+1γk), (34)

U2
k =
√

2Uk , (35)

UkUk±1Uk = Uk , (36)

UkUj = UjUk for |k − j | ≥ 2. (37)

Hence we have a representation of the Temperley-Lieb algebra with loop value√
2. Using this representation of the Temperley-Lieb algebra, we can construct

Jones representation of the braid group.
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Kitaev chain and Yang-Baxter Equation

R̆i (θ) = eθγi+1γi (38)

Then R̆i (θ) satisfies the full Yang-Baxter equation with rapidity parameter θ. That
is, we have the equation

R̆i (θ1)R̆i+1(θ2)R̆i (θ3) = R̆i+1(θ3)R̆i (θ2)R̆i+1(θ1) (39)

We can construct a Kitaev chain based on the solution R̆i (θ) of the Yang-Baxter
Equation. Let a unitary evolution be governed by R̆i (θ). When θ in the unitary
operator R̆i (θ) is time-dependent, we define a state |ψ(t)〉 by |ψ(t)〉 = R̆i |ψ(0)〉.
With the Schrödinger equation i~ ∂

∂t |ψ(t)〉 = Ĥ(t)|ψ(t)〉 one obtains:

i~ ∂
∂t [R̆i |ψ(0)〉] = Ĥ(t)R̆i |ψ(0)〉. (40)
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From YBE to Hamiltonian

We can construct a Kitaev chain based on the solution R̆i (θ) of the Yang-Baxter
Equation. Let a unitary evolution be governed by R̆i (θ). When θ in the unitary
operator R̆i (θ) is time-dependent, we define a state |ψ(t)〉 by |ψ(t)〉 = R̆i |ψ(0)〉.
With the Schrödinger equation i~ ∂

∂t |ψ(t)〉 = Ĥ(t)|ψ(t)〉 one obtains:

i~ ∂
∂t [R̆i |ψ(0)〉] = Ĥ(t)R̆i |ψ(0)〉. (41)

Then the Hamiltonian Ĥi (t) related to the unitary operator R̆i (θ) is obtained by
the formula:

Ĥi (t) = i~∂R̆i

∂t R̆
−1
i . (42)

Substituting R̆i (θ) = exp(θγi+1γi ) into equation (42), we have:

Ĥi (t) = i~θ̇γi+1γi . (43)
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Two phases of Kitaev chain model

If we only consider the nearest-neighbour interactions between Majorana
Fermions, and extend equation to an inhomogeneous chain with 2N sites, the
derived model is expressed as:

Ĥ = i~
N∑

k=1

(θ̇1γ2kγ2k−1 + θ̇2γ2k+1γ2k), (44)

with θ̇1 and θ̇2 describing odd-even and even-odd pairs, respectively.
They then analyze the above chain model in two cases:

1 θ̇1 > 0, θ̇2 = 0.

2 θ̇1 = 0, θ̇2 > 0.

Thus the Hamiltonian derived from R̆i (θ(t)) corresponding to the braiding of
nearest Majorana fermion sites is exactly the same as the 1D wire proposed by
Kitaev, and θ̇1 = θ̇2 corresponds to the phase transition point in the
“superconducting” chain. By choosing different time-dependent parameter θ1 and
θ2, one finds that the Hamiltonian Ĥ corresponds to different phases.
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Conclusions

Clifford algebra of Majorana Fermions leads to richer structure and larger
group of emergent symmetries.

There is doubling in the spectrum due to the Fermionic zero mode operators.

The double degeneracy in the topological phase of Majorana fermion chain is
topological and symmetry protected.

Topological degeneracy can be understood in terms of two sets of the
symmetry operators of the Hamiltonian which anti-commute among
themselves.

Majorana fermions provide a new type of the unitary representation of the
braid group.

Majorana fermions also provide representation of the TLA and extra-special
group.

Topological order in Majorana fermion systems is related to topological
entanglement as given in Yang-Baxter equation.

Rukhsan Ul Haq and L.H. Kauffman,arxiv:1704.00252
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