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All diagrams discussed below live on the two-torus T2 = S1 × S1:



Rectangular diagram of a link



S3 = S1 ∗ S1 = S1 × S1 × [0, 1]/ ∼
(θ, ϕ′, 1) ∼ (θ, ϕ′′, 1), (θ′, ϕ, 0) ∼ (θ′′, ϕ, 0)
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The knot represented by a rectangular diagram R is R× [0, 1]/ ∼:
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Converting a rectangular diagram into a conventional planar diagram
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A rectangle in T2



Compatible rectangles



Rectangular diagram of a surface



Rectangular diagram of a surface



Constructing a surface from a rectangular diagram of a surface
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Constructing a surface from a rectangular diagram of a surface



A smooth tile



The surface comes with a tiling



Canonic dividing configuration

δ+δ− δ+δ−
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Theorem.
Compact surfaces in S3 / isotopy =

rectangular diagrams of surfaces / basic moves.



Theorem.
Compact surfaces in S3 / isotopy =

rectangular diagrams of surfaces / basic moves.

Basic moves include:

• (half-)wrinkle creation and wrinkle reduction moves;

• stabilizations and destabilizations;

• exchange moves;

• flypes.



Wrinkle creation and wrinkle reduction moves
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Half-wrinkle creation and half-wrinkle reduction moves
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Stabilization and destabilization moves
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Stabilization and destabilization moves
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Exchange moves
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Flypes
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Mirror diagrams



Boundary circuits



Mirror diagrams represent spatial ribbon graphs
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Canonic dividing configuration

type ‘�’ type ‘�’ .



Theorem.
Compact surfaces in S3 / stable equivalence =

mirror diagrams / elementary moves.
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Theorem.
Compact surfaces in S3 / stable equivalence =

mirror diagrams / elementary moves.

Two surfaces are stably equivalent if they become isotopic after removing
some number of pairwise disjoint open discs in each.

Elementary moves include:

• extension and elimination moves;

• elementary bypass addition/removal moves;

• slide moves.



Extension and elimination moves
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Extension and elimination moves
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Elementary bypass addition/removal moves
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Elementary bypass removal/addition moves
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Slide moves
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Slide moves
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Types of moves

Type I moves: preserve (isotopy class of) δ+, change δ−

Type II moves: preserve (isotopy class of) δ−, change δ+

Neutral moves: preserve both δ+ and δ−



Types of moves

Type I moves: preserve (isotopy class of) δ+, change δ−

Type II moves: preserve (isotopy class of) δ−, change δ+

Neutral moves: preserve both δ+ and δ−

Type I moves ‘commute’ with type II moves.



Giroux’s convex surfaces



Giroux’s convex surfaces

A contact structure on a 3-manifold M 3 is a 2-plane distribution ξ that
locally has the form ξ = kerα, where α is a 1-form such that α∧ dα does
not vanish.
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structure ξ if ∃ a vector field v on M 3 transverse to F such that the flow
of v preserves ξ.



Giroux’s convex surfaces

A contact structure on a 3-manifold M 3 is a 2-plane distribution ξ that
locally has the form ξ = kerα, where α is a 1-form such that α∧ dα does
not vanish.

A surface F ⊂M 3 is convex (in Giroux’s sense) with respect to a contact
structure ξ if ∃ a vector field v on M 3 transverse to F such that the flow
of v preserves ξ.

Theorem.
Let M 3 = S3 and ξ be the standard contact structure (right-invariant
2-plane field on S3 ∼= SU(2)). Then:
Giroux’s convex surfaces with Legendrian boundary / convex isotopy =

rectangular diagrams of surfaces / neutral and type I moves.


