Workshop

Topological structures in mathematics, physics and biology

Rectangular diagrams of surfaces and mirror diagrams

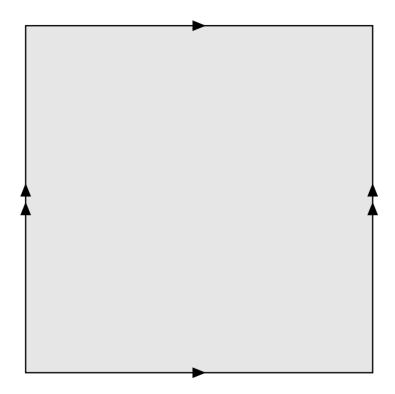
Ivan Dynnikov

Steklov Mathematical Institute of Russian Academy of Sciences

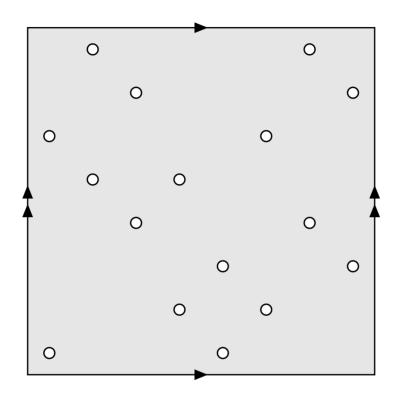
Berdsk, September 17, 2018

Collaborator: Maxim Prasolov (Moscow State University)

All diagrams discussed below live on the two-torus $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$:



Rectangular diagram of a link



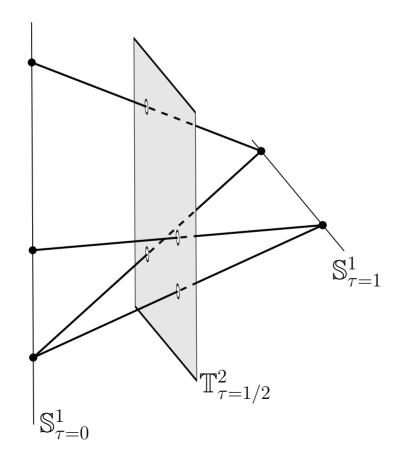
$$\begin{split} \mathbb{S}^3 &= \mathbb{S}^1 * \mathbb{S}^1 = \mathbb{S}^1 \times \mathbb{S}^1 \times [0,1]/\sim \\ (\theta,\varphi',1) &\sim (\theta,\varphi'',1), \qquad (\theta',\varphi,0) \sim (\theta'',\varphi,0) \end{split}$$

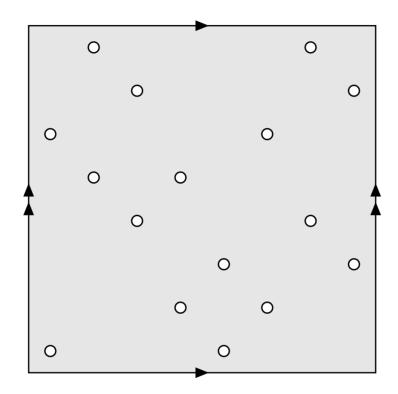
$$\mathbb{S}^3 = \mathbb{S}^1 * \mathbb{S}^1 = \mathbb{S}^1 \times \mathbb{S}^1 \times [0, 1] / \sim$$
$$(\theta, \varphi', 1) \sim (\theta, \varphi'', 1), \qquad (\theta', \varphi, 0) \sim (\theta'', \varphi, 0)$$

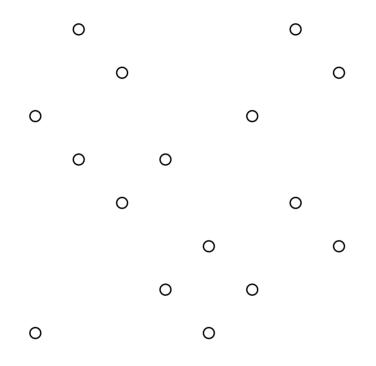
The knot represented by a rectangular diagram R is $R \times [0, 1] / \sim$:

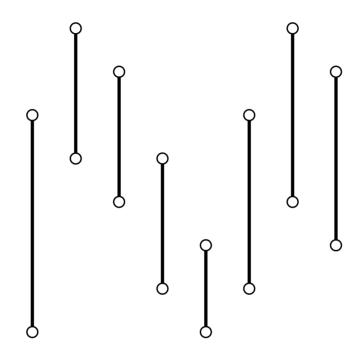
$$\mathbb{S}^{3} = \mathbb{S}^{1} * \mathbb{S}^{1} = \mathbb{S}^{1} \times \mathbb{S}^{1} \times [0, 1] / \sim$$
$$(\theta, \varphi', 1) \sim (\theta, \varphi'', 1), \qquad (\theta', \varphi, 0) \sim (\theta'', \varphi, 0)$$
The limit represented by a rectangular diagram P is $P \times [0, 1] / [0$

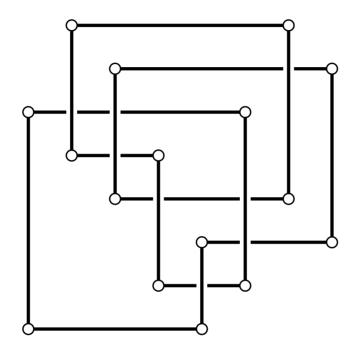
The knot represented by a rectangular diagram R is $R \times [0, 1] / \sim$:



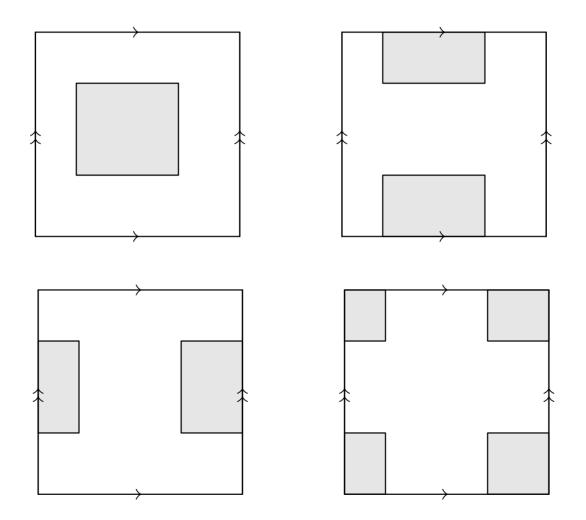




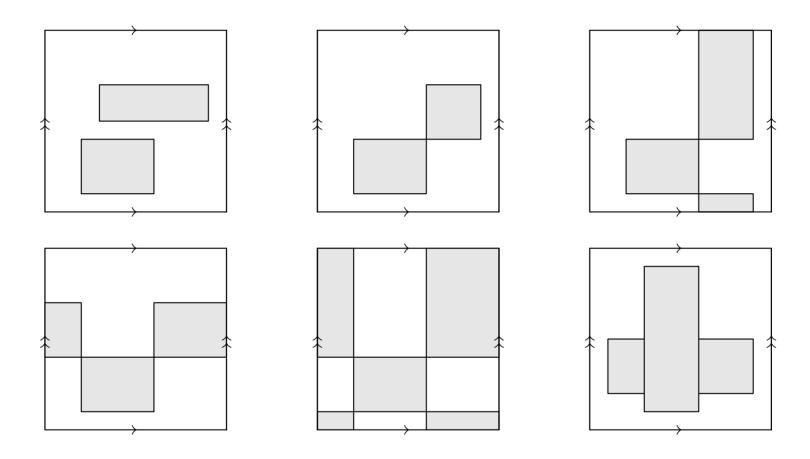




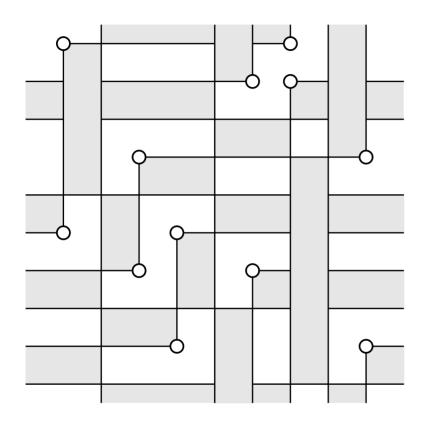
A rectangle in \mathbb{T}^2



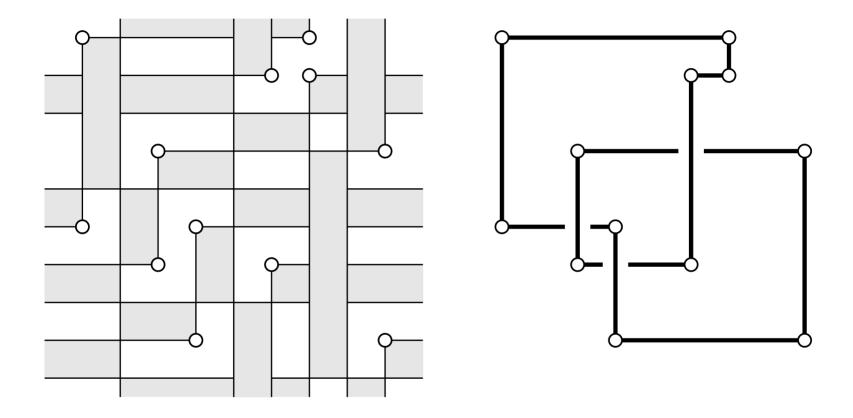
Compatible rectangles



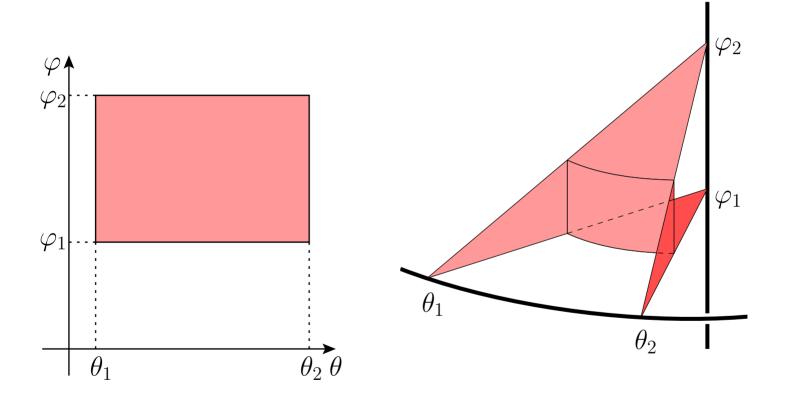
Rectangular diagram of a surface



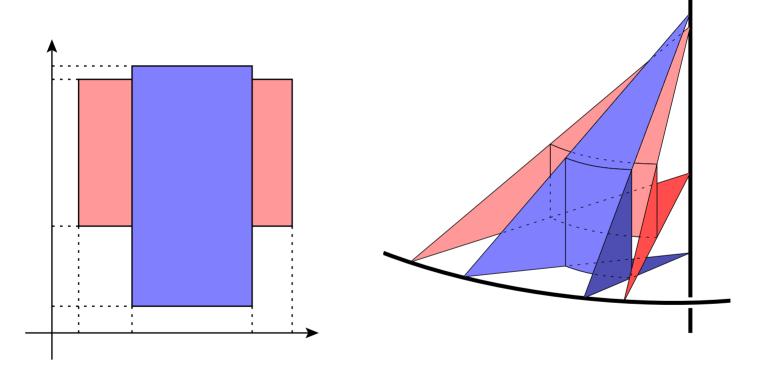
Rectangular diagram of a surface

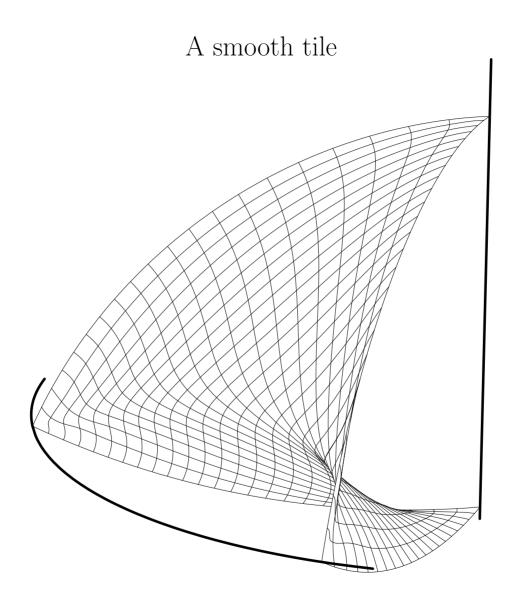


Constructing a surface from a rectangular diagram of a surface

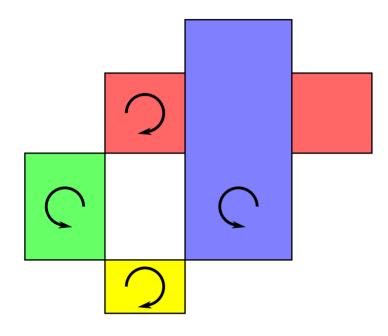


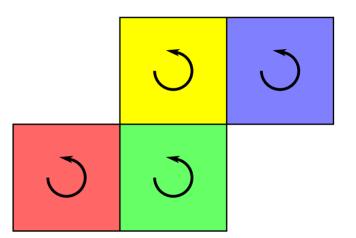
Constructing a surface from a rectangular diagram of a surface



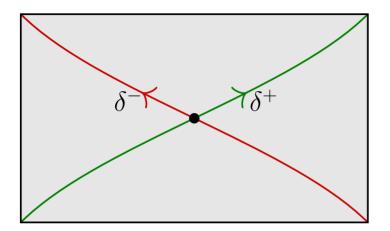


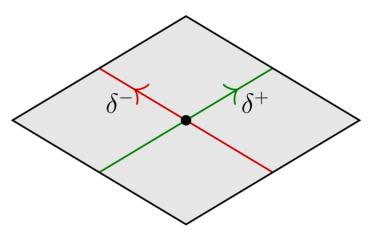
The surface comes with a tiling



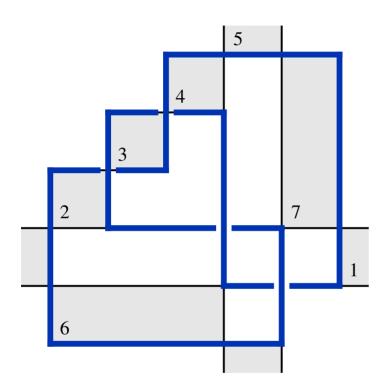


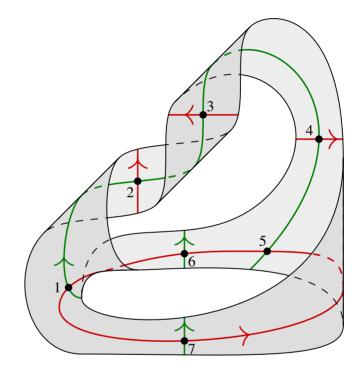
Canonic dividing configuration





Example





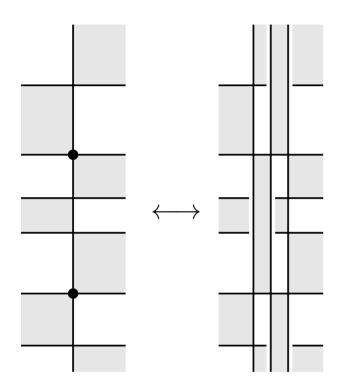
Theorem. Compact surfaces in \mathbb{S}^3 / isotopy = rectangular diagrams of surfaces / basic moves.

Theorem. Compact surfaces in \mathbb{S}^3 / isotopy = rectangular diagrams of surfaces / basic moves.

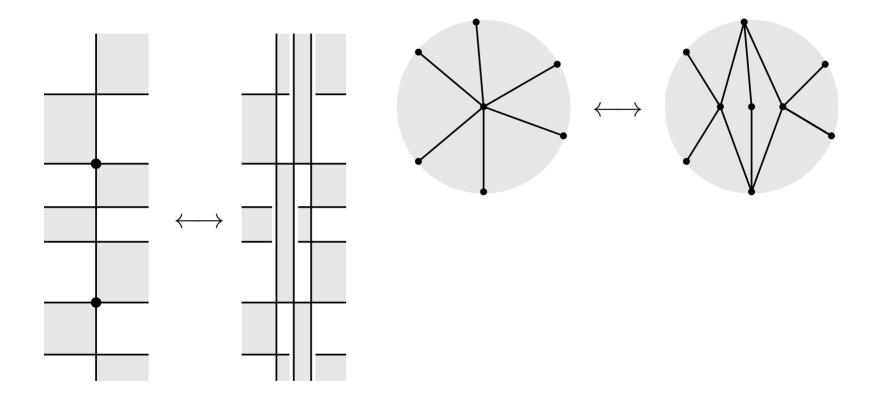
Basic moves include:

- (half-)wrinkle creation and wrinkle reduction moves;
- stabilizations and destabilizations;
- exchange moves;
- flypes.

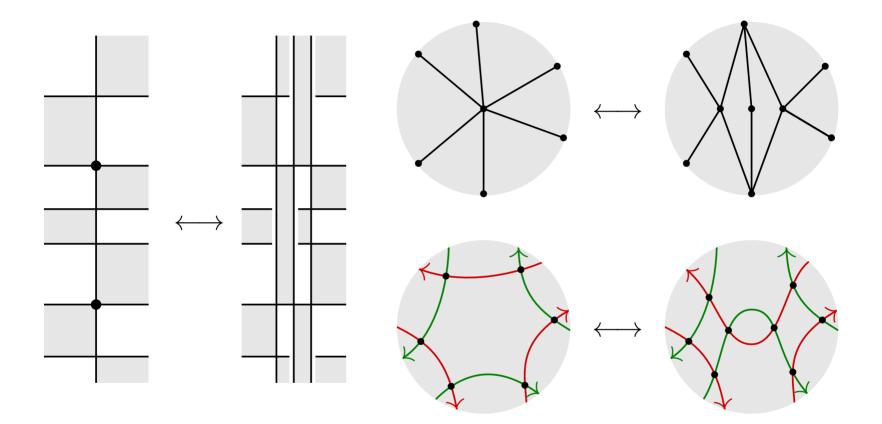
Wrinkle creation and wrinkle reduction moves



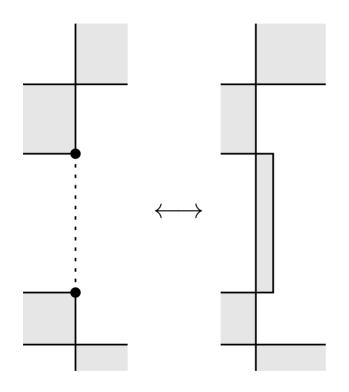
Wrinkle creation and wrinkle reduction moves



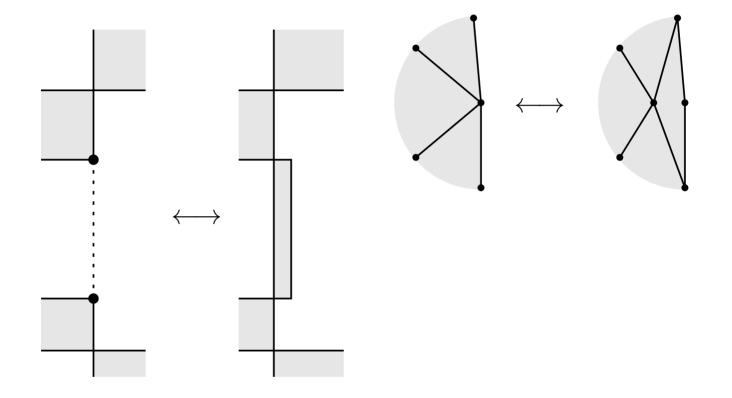
Wrinkle creation and wrinkle reduction moves



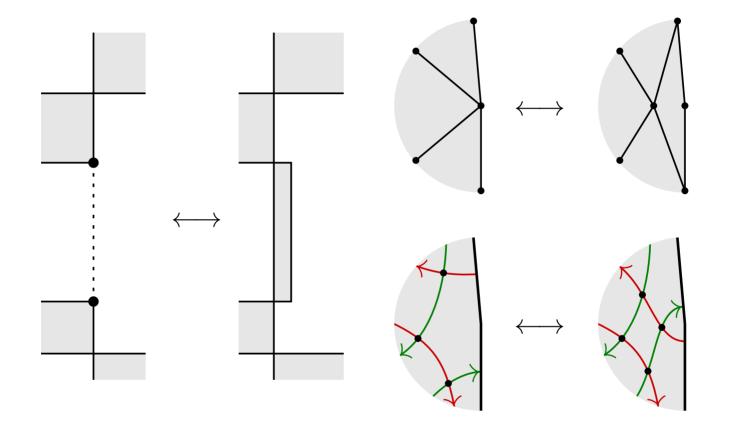
Half-wrinkle creation and half-wrinkle reduction moves



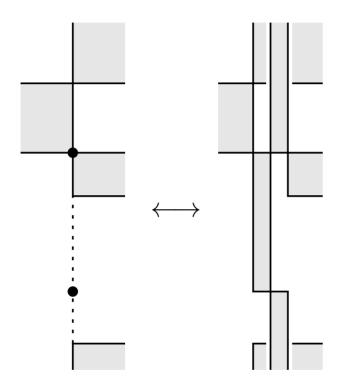
Half-wrinkle creation and half-wrinkle reduction moves



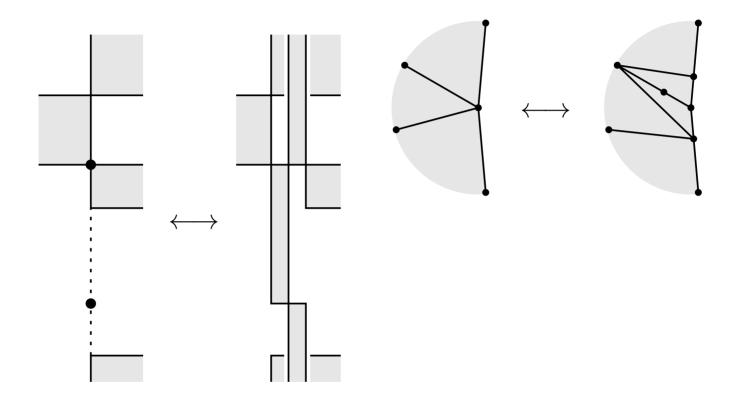
Half-wrinkle creation and half-wrinkle reduction moves



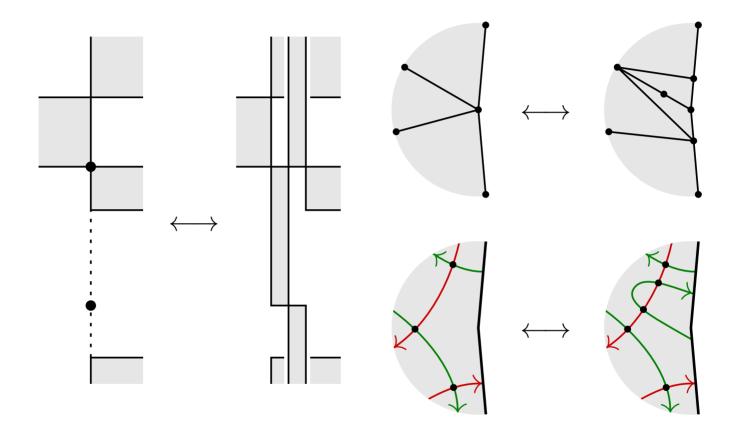
Stabilization and destabilization moves



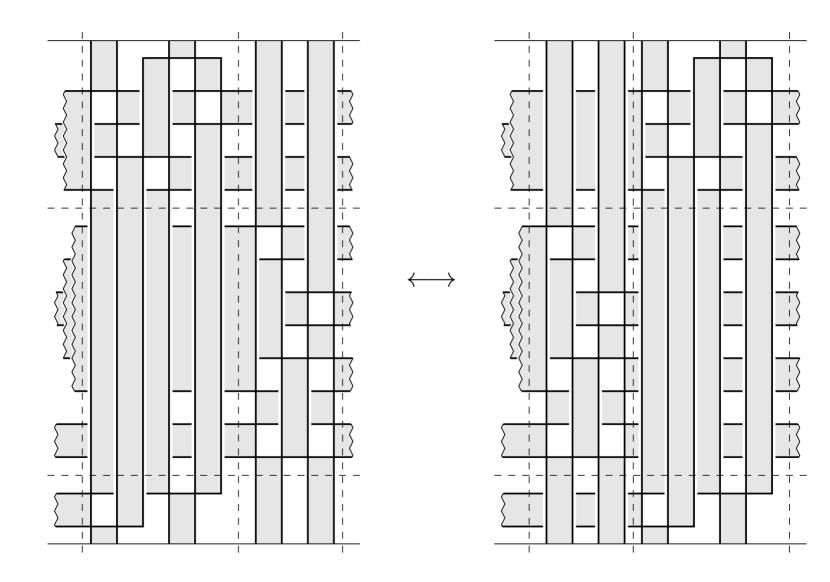
Stabilization and destabilization moves

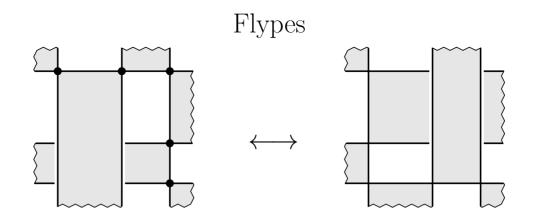


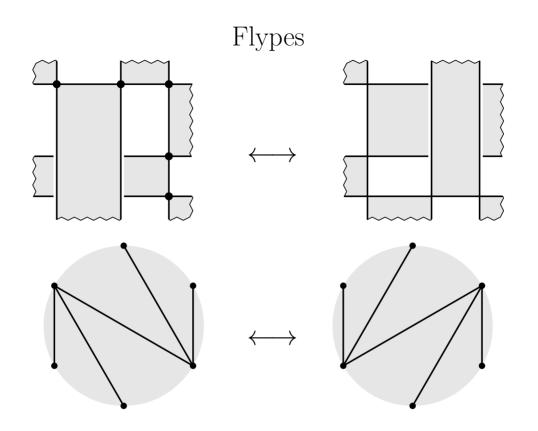
Stabilization and destabilization moves

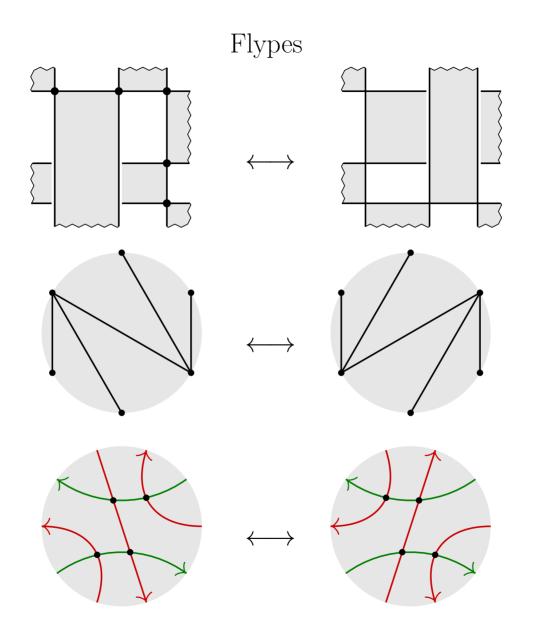


Exchange moves

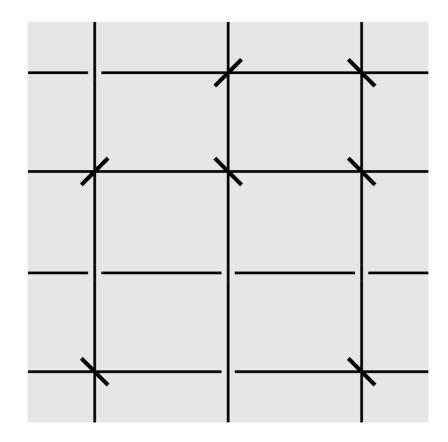




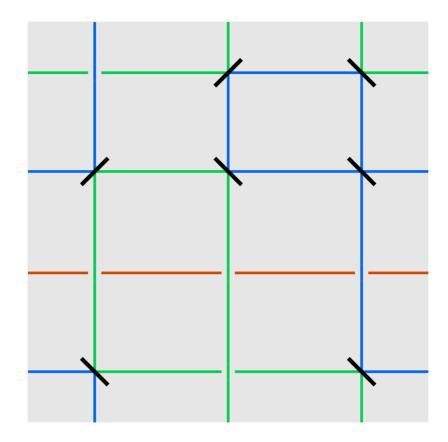




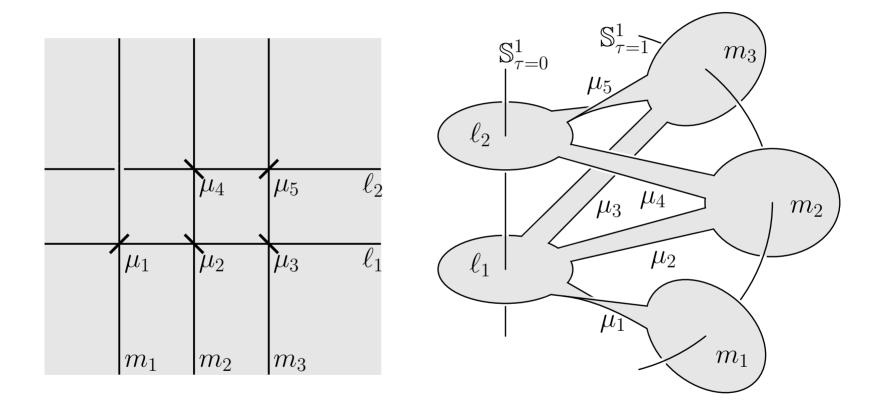
Mirror diagrams



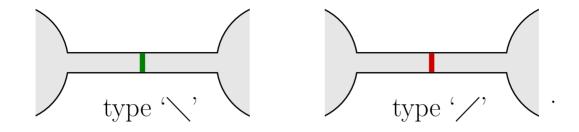
Boundary circuits



Mirror diagrams represent spatial ribbon graphs



Canonic dividing configuration



Theorem. Compact surfaces in \mathbb{S}^3 / stable equivalence = mirror diagrams / elementary moves.

Theorem. Compact surfaces in \mathbb{S}^3 / stable equivalence = mirror diagrams / elementary moves.

Two surfaces are *stably equivalent* if they become isotopic after removing some number of pairwise disjoint open discs in each.

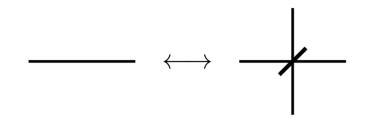
Theorem. Compact surfaces in \mathbb{S}^3 / stable equivalence = mirror diagrams / elementary moves.

Two surfaces are *stably equivalent* if they become isotopic after removing some number of pairwise disjoint open discs in each.

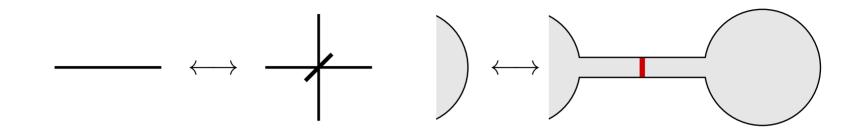
Elementary moves include:

- extension and elimination moves;
- elementary bypass addition/removal moves;
- slide moves.

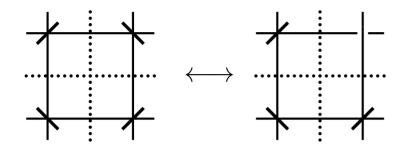
Extension and elimination moves



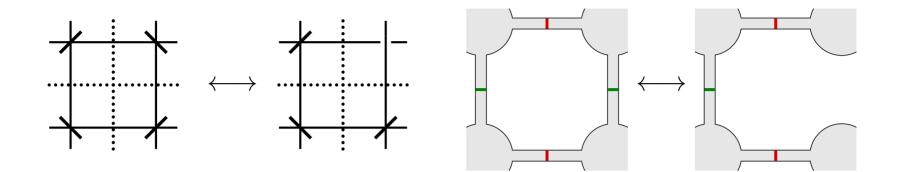
Extension and elimination moves



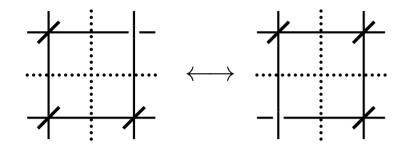
Elementary bypass addition/removal moves



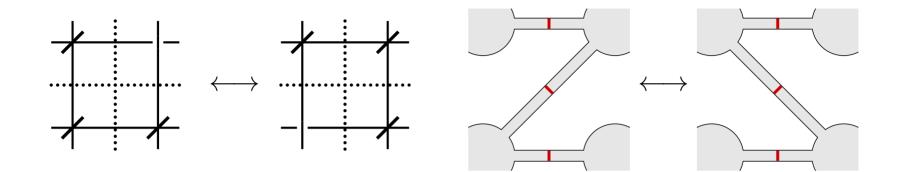
Elementary bypass removal/addition moves



Slide moves



Slide moves



Types of moves

Type I moves: preserve (isotopy class of) δ^+ , change δ^-

Type II moves: preserve (isotopy class of) δ^- , change δ^+

Neutral moves: preserve both δ^+ and δ^-

Types of moves

Type I moves: preserve (isotopy class of) δ^+ , change δ^-

Type II moves: preserve (isotopy class of) δ^- , change δ^+

Neutral moves: preserve both δ^+ and δ^-

Type I moves 'commute' with type II moves.

A contact structure on a 3-manifold M^3 is a 2-plane distribution ξ that locally has the form $\xi = \ker \alpha$, where α is a 1-form such that $\alpha \wedge d\alpha$ does not vanish.

A contact structure on a 3-manifold M^3 is a 2-plane distribution ξ that locally has the form $\xi = \ker \alpha$, where α is a 1-form such that $\alpha \wedge d\alpha$ does not vanish.

A surface $F \subset M^3$ is *convex* (in Giroux's sense) with respect to a contact structure ξ if \exists a vector field v on M^3 transverse to F such that the flow of v preserves ξ .

A contact structure on a 3-manifold M^3 is a 2-plane distribution ξ that locally has the form $\xi = \ker \alpha$, where α is a 1-form such that $\alpha \wedge d\alpha$ does not vanish.

A surface $F \subset M^3$ is *convex* (in Giroux's sense) with respect to a contact structure ξ if \exists a vector field v on M^3 transverse to F such that the flow of v preserves ξ .

Theorem.

Let $M^3 = \mathbb{S}^3$ and ξ be the standard contact structure (right-invariant 2-plane field on $\mathbb{S}^3 \cong SU(2)$). Then: Giroux's convex surfaces with Legendrian boundary / convex isotopy = rectangular diagrams of surfaces / neutral and type I moves.